Skip to main content Accessibility help
×
Home

Regional functional synchronizations in dementia with Lewy bodies and Alzheimer's disease

  • Luis R. Peraza (a1) (a2), Sean J. Colloby (a1), Liam Deboys (a1), John T. O'Brien (a3), Marcus Kaiser (a4) and John-Paul Taylor (a1)...

Abstract

Background:

Dementia with Lewy bodies (DLB) is a common cause of dementia in the elderly population after Alzheimer's disease (AD), and at early stages differential diagnosis between DLB and AD might be difficult due to their symptomatic overlap, e.g. cognitive and memory impairments. We aimed to investigate functional brain differences between both diseases in patients recently diagnosed.

Methods:

We investigated regional functional synchronizations using regional homogeneity (ReHo) in patients clinically diagnosed with DLB (n = 19) and AD (n = 18), and for comparisons we also included healthy controls (HC, n = 16). Patient groups were matched by age, education, and by the level of cognitive impairment (MMSE p-value = 0.36). Additionally, correlations between ReHo values and clinical scores were investigated.

Results:

The DLB group showed lower ReHo in sensory-motor cortices and higher ReHo in left middle temporal gyrus when compared with HCs (p-value < 0.001 uncorrected). The AD group demonstrated lower ReHo in the cerebellum and higher ReHo in the left/right lingual gyri, precuneus cortex, and other occipital and parietal regions (p-value < 0.001 uncorrected).

Conclusions:

Our results agree with previous ReHo investigations in Parkinson's disease (PD), suggesting that functional alterations in motor-related regions might be a characteristic of the Lewy body disease spectrum. However, our results in AD contradict previously reported findings for this disease and ReHo, which we speculate are a reflection of compensatory brain responses at early disease stages. ReHo differences between patient groups were at regions related to the default mode and sensory-motor resting state networks which might reflect the aetiological divergences in the underlying disease processes between AD and DLB.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Regional functional synchronizations in dementia with Lewy bodies and Alzheimer's disease
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Regional functional synchronizations in dementia with Lewy bodies and Alzheimer's disease
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Regional functional synchronizations in dementia with Lewy bodies and Alzheimer's disease
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence should be addressed to: Luis R. Peraza, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK. Phone: 0191208 1125. Email: luis.peraza-rodriguez@newcastle.ac.uk.

References

Hide All
Agosta, F., Pievani, M., Geroldi, C., Copetti, M., Frisoni, G. B. and Filippi, M. (2012). Resting state fMRI in Alzheimer's disease: beyond the default mode network. Neurobiology of Aging, 33, 15641578.
Andrews-Hanna, J. R., Reidler, J. S., Huang, C. and Buckner, R. L. (2010). Evidence for the default network's role in spontaneous cognition. Journal of Neurophysiology, 104, 322335.
Bai, F. et al. (2008). Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: a combined structural and resting-state functional MRI study. Neuroscience Letters, 438, 111115.
Borroni, B. et al. (2015). Structural and functional imaging study in dementia with Lewy bodies and Parkinson's disease dementia. Parkinsonism & Related Disorders, 21, 10491055.
Brett, M., Anton, J. L., Valabregue, R. and Poline, J. B. (2002). Region of interest analysis using an SPM toolbox. (Abstract 10511. In Presented at the 8th international conference on functional mapping of the human brain, June 2–6, 2002, Sendai/Japan)[available on CD-ROM]. NeuroImage, 16.
Choe, I. H., Yeo, S., Chung, K. C., Kim, S. H. and Lim, S. (2013). Decreased and increased cerebral regional homogeneity in early Parkinson's disease. Brain Research, 1527, 230237.
Colloby, S. J., O'Brien, J. T. and Taylor, J. P. (2014). Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimers disease: a VBM-DARTEL study. Psychiatry Research, 223, 187191.
Damoiseaux, J. S., Prater, K. E., Miller, B. L. and Greicius, M. D. (2012). Functional connectivity tracks clinical deterioration in Alzheimer's disease. Neurobiology of Aging, 33, e819–830.
Donaghy, P., Thomas, A. J. and O'Brien, J. T. (2015). Amyloid PET imaging in Lewy body disorders. The American Journal of Geriatric Psychiatry, 23, 2337.
Galvin, J. E., Price, J. L., Yan, Z., Morris, J. C. and Sheline, Y. I. (2011). Resting bold fMRI differentiates dementia with Lewy bodies versus Alzheimer disease. Neurology, 76, 17971803.
Gottwald, B., Mihajlovic, Z., Wilde, B. and Mehdorn, H. M. (2003). Does the cerebellum contribute to specific aspects of attention? Neuropsychologia, 41, 14521460.
Grady, C. L., McIntosh, A. R., Beig, S., Keightley, M. L., Burian, H. and Black, S. E. (2003). Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. The Journal of Neuroscience, 23, 986993.
Hacker, C. D., Perlmutter, J. S., Criswell, S. R., Ances, B. M. and Snyder, A. Z. (2012). Resting state functional connectivity of the striatum in Parkinson's disease. Brain, 135, 36993711.
He, Y. et al. (2007). Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study. NeuroImage, 35, 488500.
Li, W. et al. (2012). Changes in regional cerebral blood flow and functional connectivity in the cholinergic pathway associated with cognitive performance in subjects with mild Alzheimer's disease after 12-week donepezil treatment. NeuroImage, 60, 10831091.
McKeith, I. G. et al. (2005). Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology, 65, 18631872.
McKeith, I. et al. (2007). Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurology, 6, 305313.
Mukaetova-Ladinska, E. B. (2015). Molecular imaging biomarkers for dementia with Lewy bodies: an update. International Psychogeriatrics, 27, 555577.
Peraza, L. R. et al. (2014). fMRI resting state networks and their association with cognitive fluctuations in dementia with Lewy bodies. NeuroImage: Clinical, 4, 558565.
Peraza, L. R., Taylor, J. P. and Kaiser, M. (2015). Divergent brain functional network alterations in dementia with Lewy bodies and Alzheimer's disease. Neurobiology of Aging, 36, 24582467.
Robinson, S. et al. (2009). A resting state network in the motor control circuit of the basal ganglia. BMC Neuroscience, 10, 137.
Schulz-Schaeffer, W. J. (2010). The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia. Acta Neuropathologica, 120, 131143.
Song, X.-W. et al. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE, 6, e25031.
Watson, R., O'Brien, J. T., Barber, R. and Blamire, A. M. (2012). Patterns of gray matter atrophy in dementia with Lewy bodies: a voxel-based morphometry study. International Psychogeriatrics, 24, 532540.
Wu, T. et al. (2009a). Regional homogeneity changes in patients with Parkinson's disease. Human Brain Mapping, 30, 15021510.
Wu, T., Wang, L., Chen, Y., Zhao, C., Li, K. and Chan, P. (2009b). Changes of functional connectivity of the motor network in the resting state in Parkinson's disease. Neuroscience Letters, 460, 610.
Wu, T., Zang, Y., Wang, L., Long, X., Li, K. and Chan, P. (2007). Normal aging decreases regional homogeneity of the motor areas in the resting state. Neuroscience Letters, 423, 189193.
Zang, Y., Jiang, T., Lu, Y., He, Y. and Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22, 394400.
Zhang, H. Y. et al. (2009). Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease. Behavioural Brain Research, 197, 103108.
Zhang, Z. et al. (2012). Altered spontaneous activity in Alzheimer's disease and mild cognitive impairment revealed by regional homogeneity. NeuroImage, 59, 14291440.

Keywords

Type Description Title
WORD
Supplementary materials

Peraza supplementary material
Peraza supplementary material 1

 Word (404 KB)
404 KB
WORD
Supplementary materials

Peraza supplementary material
Table S1

 Word (19 KB)
19 KB
WORD
Supplementary materials

Peraza supplementary material
Tables S2-S4

 Word (17 KB)
17 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed