Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-v5sh4 Total loading time: 0.272 Render date: 2021-04-13T01:18:16.847Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Impact of socioeconomic status on initial clinical presentation to a memory disorders clinic

Published online by Cambridge University Press:  16 December 2013

Winnie Qian
Affiliation:
Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada
Tom A. Schweizer
Affiliation:
Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada Division of Neurosurgery, St. Michael's Hospital, Toronto, Canada Faculty of Medicine, Department of Surgery, University of Toronto, Toronto, Canada
Corinne E. Fischer
Affiliation:
Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada Faculty of Medicine, Department of Psychiatry, University of Toronto, Toronto, Canada
Corresponding
E-mail address:

Abstract

Background:

Dementia affects 15% of Canadians 65 and older, and the prevalence is expected to double over the next two decades. Low socioeconomic status (SES) can increase the risk of Alzheimer's disease (AD) and the precursor mild cognitive impairment (MCI), but it is unknown what the relationship of SES is on initial clinical presentation to a memory disorders clinic.

Methods:

Data from 127 AD and 135 MCI patients who presented to our Memory Disorders Clinic from 2004 to 2013 were analyzed retrospectively. We examined the relationship between SES (measured using Hollingshead two-factor index) and (1) diagnosis of either AD or MCI; (2) age when first presented to clinic; (3) objective cognitive tests to indicate clinical severity; and (4) the use of cognitive enhancers, medication for treating mild-to-moderate AD patients.

Results:

AD patients had lower SES than MCI patients (p < 0.001, r = 0.232). Lower SES was associated with a greater age at initial time of diagnosis (χ2 = 11.5, p = 0.001). In MCI patients, higher SES individuals outperformed lower SES individuals on the BNA after correcting for the effect of age (p = 0.004). Lower SES was also associated with decreased use of cognitive enhancers in AD patients (p < 0.001, r = 0.842).

Conclusion:

Individuals with lower SES come into memory clinic later when the disease has progressed to dementia, while higher SES individuals present earlier when the disease is still in its MCI stage. There were more higher SES individuals who presented to our memory clinic. Higher SES is associated with better cognitive functioning and increased use of cognitive enhancers. The health policy implication is that we need to better engage economically disadvantaged individuals, perhaps at the primary care level.

Type
Research Article
Copyright
Copyright © International Psychogeriatric Association 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Allan, C. L., Behrman, S. and Ebmeier, K. P. (2013). Early diagnosis beneficial in Alzheimer's disease. Practitioner, 257, 1518, 12.Google Scholar
Alzheimer Society (2012). A new way of looking at the impact of dementia in Canada [pdf]. Available at: http://www.alzheimer.ca/~/media/Files/national/Media-releases/asc_release_09272012_newdatarelease_en.ashx (accessed 4 June 2013).Google Scholar
Darvesh, S., Leach, L., Black, S. E., Kaplan, E. and Freedman, M. (2005). The behavioural neurology assessment. Canadian Journal of Neurological Sciences, 32, 167177.CrossRefGoogle Scholar
Dawe, B., Procter, A. and Philpot, M. (1992). Concepts of mild memory impairment in the elderly and their relationship to dementia: a review. International Journal of Geriatric Psychiatry, 7, 473479.CrossRefGoogle Scholar
Doraiswamy, P. M. (2003). Interventions for mild cognitive impairment and Alzheimer disease. American Journal of Geriatric Psychiatry, 11, 120130.CrossRefGoogle ScholarPubMed
Droomers, M. and Westert, G. P. (2004). Do lower socioeconomic groups use more health services, because they suffer from more illnesses? European Journal of Public Health, 14, 311313.CrossRefGoogle ScholarPubMed
EClipSE (2010). Education, the brain reserve and dementia: neuroprotective or compensation? Brain, 133, 22102216.CrossRefGoogle ScholarPubMed
Evans, D. A. et al. (1997). Education and other measures of socioeconomic status and risk of incident Alzheimer disease in a defined population of older persons. Archives of Neurology, 54, 13991405.CrossRefGoogle Scholar
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle Scholar
Fratiglioni, L. and Wang, H. X. (2007). Brain reserve hypothesis in dementia. Journal of Alzheimer's Disease, 12, 1122.CrossRefGoogle Scholar
Goldbourt, U., Schnaider-Beeri, M. and Davidson, M. (2007). Socioeconomic status in relationship to death of vascular disease and late-life dementia. Journal of the Neurological Sciences, 257, 177181.CrossRefGoogle ScholarPubMed
Hollingshead, A. B. and Redlich, F. C. (1957). Two Factor Index of Social Position. New Haven, CT: Yale University.Google Scholar
Huang, Y. J., Lin, C. H., Lane, H. Y. and Tsai, G. E. (2012). NMDA neurotransmission dysfunction in behavioral and psychological symptoms of Alzheimer's disease. Current Neuropharmacology, 10, 272285.CrossRefGoogle ScholarPubMed
Karp, A., Kareholt, I., Qiu, C., Bellander, T., Winblad, B. and Fratiglioni, L. (2004). Relation of education and occupation-based socioeconomic status to incident Alzheimer's disease. American Journal of Epidemiology, 159, 175183.CrossRefGoogle ScholarPubMed
Koster, A. et al. (2005). Socioeconomic differences in cognitive decline and the role of biomedical factors. Annals of Epidemiology, 15, 564571.CrossRefGoogle ScholarPubMed
Krishnadas, R. et al. (2013). Socioeconomic deprivation and cortical morphology: psychological, social, and biological determinants of ill health study. Psychosomatic Medicine, 75, 616623.CrossRefGoogle ScholarPubMed
Leung, K. K., Bartlett, J. W., Barnes, J., Manning, E. N., Ourselin, S. and Fox, N. C. (2013). Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration. Neurology, 80, 648654.CrossRefGoogle ScholarPubMed
Marioni, R. E., van den Hout, A., Valenzuela, M. J., Brayne, C. and Matthews, F. E. (2012). Active cognitive lifestyle associates with cognitive recovery and a reduced risk of cognitive decline. Journal of Alzheimer's Disease, 28, 223230.Google Scholar
Moritz, D. J. and Petitti, D. B. (1993). Association of education with reported age of onset and severity of Alzheimer's disease at presentation: implications for the use of clinical samples. American Journal of Epidemiology, 137, 456462.Google Scholar
Munoz, D. G., Ganapathy, G. R., Eliasziw, M. and Hachinski, V. (2000). Educational attainment and socioeconomic status of patients with autopsy-confirmed Alzheimer disease. Archives of Neurology, 57, 8589.CrossRefGoogle Scholar
Ngandu, T. et al. (2007). Education and dementia: what lies behind the association? Neurology, 69, 14421450.CrossRefGoogle ScholarPubMed
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Kokmen, E. and Tangelos, E. G. (1997). Aging, memory, and mild cognitive impairment. International Psychogeriatrics, 9, 6569.CrossRefGoogle Scholar
Prince, M. et al. (2012). Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: a 10/66 Dementia Research Group population-based cohort study. Lancet, 380, 5058.CrossRefGoogle ScholarPubMed
Sattler, C., Toro, P., Schonknecht, P. and Schroder, J. (2012). Cognitive activity, education and socioeconomic status as preventive factors for mild cognitive impairment and Alzheimer's disease. Psychiatry Research, 196, 9095.CrossRefGoogle ScholarPubMed
Scazufca, M. et al. (2008). High prevalence of dementia among older adults from poor socioeconomic backgrounds in Sao Paulo, Brazil. International Psychogeriatrics, 20, 394405.CrossRefGoogle ScholarPubMed
Schroder, J., Kratz, B., Pantel, J., Minnemann, E., Lehr, U. and Sauer, H. (1998). Prevalence of mild cognitive impairment in an elderly community sample. Journal of Neural Transmission: Supplementum, 54, 5159.CrossRefGoogle Scholar
Stern, Y., Albert, S., Tang, M. X. and Tsai, W. Y. (1999). Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology, 53, 19421947.CrossRefGoogle Scholar
Stern, Y., Gurland, B., Tatemichi, T. K., Tang, M. X., Wilder, D. and Mayeux, R. (1994). Influence of education and occupation on the incidence of Alzheimer's disease. JAMA, 271, 10041010.CrossRefGoogle Scholar
Teel, C. S. (2004). Rural practitioners’ experiences in dementia diagnosis and treatment. Aging and Mental Health, 8, 422429.CrossRefGoogle Scholar
Tervo, S. et al. (2004). Incidence and risk factors for mild cognitive impairment: a population-based three-year follow-up study of cognitively healthy elderly subjects. Dementia and Geriatric Cognitive Disorders, 17, 196203.CrossRefGoogle Scholar
Tucker, A. M. and Stern, Y. (2011). Cognitive reserve in aging. Current Alzheimer Research, 8, 354360.CrossRefGoogle Scholar
Zec, R. F. et al. (1992). Alzheimer disease assessment scale: useful for both early detection and staging of dementia of the Alzheimer type. Alzheimer Disease and Associated Disorders, 6, 89102.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 35
Total number of PDF views: 146 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 13th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Impact of socioeconomic status on initial clinical presentation to a memory disorders clinic
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Impact of socioeconomic status on initial clinical presentation to a memory disorders clinic
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Impact of socioeconomic status on initial clinical presentation to a memory disorders clinic
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *