Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T11:47:59.743Z Has data issue: false hasContentIssue false

Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere*

Published online by Cambridge University Press:  19 September 2011

S. J. Johnson
Affiliation:
Department of Entomology, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803
Get access

Abstract

The fall armyworm, Spodoptera frugiperda (J. E. Smith), has a high reproductive rate of 900–1000 eggs per female, a relatively short generation time of 30 days and good dispersal ability. These traits make it a successful colonizing species. There is a large body of circumstantial evidence that migration is a major component in the life history strategy of this species. Although the fall armyworm is unable to survive the winter in the United States except in southern areas of Florida and Texas, it redistributes itself over most of the eastern United States each growing season. Long-range movement from Mississippi to Canada in 30 hr on a low-level jet stream was documented on one occasion with synoptic weather maps. Many fall armyworm moths have been collected in the Gulf of Mexico as far as 250 km from land, indicating the possibility of seasonal trans-Gulf migration between the United States and the tropics. Electrophoretic analyses of populations of a corn “race” of fall armyworm collected throughout the Caribbean Basin indicated low genetic heterogeneity. Nei's genetic distance estimate (0.015) and Wright's Fst value (0.032) both suggested undifferentiated populations with interbreeding across the entire geographic range. Wet and dry seasons in the east and west coast of Central America and elsewhere in the tropics alternate with each other so that only one habitat is available at a time. This fluctuation in available habitat is proposed as the templet that led to the evolution and maintenance of migration in the colonizing life history strategy of the fall armyworm.

Résumé

La légionnaire d'automne, Spodoptera frugiperda (J. E. Smith), possède un fort potentiel reproducteur de 900–1000 oeufs par femelle, un cycle vital bref de 30 jours et un grand pouvoir de dispersion. Ces traits en font une bonne espèce colonisatrice. Il existe plusieurs preuves circonstancielles que la migration joue un role de première importance dans la stratégie du cycle vital de cette espèce. La légionnaire d'automne est incapable de survivre à l'hiver américain sauf dans certaines régions de la Floride et du Texas, elle se redistribue à l'est des Etats-Unis à chaque saison. A une occasion, un long déplacement d'un courant d'air de basse altitude du Mississipi au Canada en 30 heures fut documenté a partir de cartes climatiques synoptiques. Plusieurs adultes de la légionnaire d'automne furent récoltés dans le Golfe du Mexique, à plus de 250 km des côtes, indiquant la possibilité d'une migration saisonnière entre les tropiques et les Etats-Unis. L'analyse electrophorétique des populations d'une “race” du maïs de la légionnaire d'automne récoltées à travers le bassin des Caraïbes indique une faible hétérogénéité génétique. La distance génétique de Nei (0.015) et la valeur Fst de Wright (0.032) suggèrent l'existence d'une population indifférenciée qui s'accouplerait sur l'ensemble de la répartition géographique de l'espèce. Les saisons sèches et humides alternent de la côte est à la côte ouest de l'Amérique Centrale et des tropiques de telle façon qu'il n'y a qu'un seul habitat disponible à tout moment. Cette fluctuation dans la disponibilité d'habitat est proposée comme le patron qui a permi l'évolution et le maintient de la migration dans la stratégie colonisatrice du cycle vital de la légionnaire d'automne.

Type
Symposium IV: Migration and Dispersal of Tropical Noctuid Moths
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, K. L. (1980) The whorlworm, Spodoptera frugiperda, in Central America and neighboring areas. Fla. Ent. 63, 456467.CrossRefGoogle Scholar
Anonymous (1979) Insect detection, evaluation and prediction report. Special Report Southeastern Branch Ent. Soc. Am. pp. 1–47.Google Scholar
Ayala, F. J. (1975) Genetic differentiation during the speciation process. Evol. Biol. 8, 178.Google Scholar
Barfield, C. S., Mitchell, E. R. and Poe, S. L. (1978) A temperature-dependent model for fall armyworm development. Ann. Ent. Soc. Am. 71, 7074.CrossRefGoogle Scholar
Barfield, C. S., Pashley, D. P., Johnson, S. J. and Waters, D. J. (1986) Life history strategies and migration in fall armyworm and velvetbean caterpillar. Proc. 1986 Tropical/Subtropical Agric. Res. Symp. pp. II–1–II–23.Google Scholar
Baust, J. G., Benton, A. H. and Aumann, G. D. (1981) The influence of offshore platforms on insect dispersal and migration. Bull. Ent. Soc. Am. 27, 2325.Google Scholar
Den Boer, M. H. (1978) Isoenzymes and migration in the African armyworm Spodoptera exempta (Lepidoptera, Noctuidae). J. Zool., Lond. 185, 539553.CrossRefGoogle Scholar
Dingle, H. (1972) Migration strategies of insects. Science 175, 13271335.CrossRefGoogle ScholarPubMed
Dingle, H. (1982) Function of migration in the seasonal synchronization of insects. Ent. exp. & appl. 31, 3648.CrossRefGoogle Scholar
Eanes, W. F. and Koehn, R. K. (1978) An analysis of genetic structure in the monarch butterfly, Danaus plexippus L. Evolution 32, 784797.CrossRefGoogle ScholarPubMed
Glick, P. A. (1939) The distribution of insects, spiders and mites in the air. U.S. Dep. Agric. Tech. Bull.1 No. 673, pp. 1150.Google Scholar
Hinds, W. E. and Dew, J. A. (1915) The grass worm or fall armyworm. Ala. Agric. Exp. Stn. Bull. No. 186, 6192.Google Scholar
Hogg, D. B., Pitre, H. N. and Anderson, R. E. (1982) Assessment of early-season phenology of the fall armyworm (Lepidoptera: Noctuidae) in Mississippi. Environ. Ent. 11, 705710.CrossRefGoogle Scholar
Johnson, S. J. and Mason, L. J. (1986) The noctuidae: A case history. In: Movement and Dispersal of Agriculturally Important Biotic Agents (Edited by MacKenzie, D. R., Barfield, C. S., Kennedy, G. G. and Berger, R. D.), pp. 421433. Claitors Pub. Div., Baton Rouge, Louisiana.Google Scholar
Leslie, J. F. and Dingle, H. (1983) Interspecific hybridization and genetic divergence in milkweed bugs (Oncopeltus: Hemiptera: Lygaeidae). Evol. 37, 583591.Google ScholarPubMed
Lewis, T. and Taylor, L. R. (1964) Diurnal periodicity of flight by insects. Trans. R. Ent. Soc. Lond. 116, 393479.CrossRefGoogle Scholar
Li, K. P., Wong, H. and Woo, W. (1964) Route of the seasonal migration of the oriental armyworm moth in the eastern part of China as indicated by a three-year result of releasing and recapturing of marked moths. Rev. Appl. Ent. 53, 391. (In Chinese Acta Phytophylacia Sinica 3, 93–100.)Google Scholar
Luginbill, P. (1928) The fall armyworm. U.S. Dep. Agric. Tech. Bull. No. 34, pp. 191.Google Scholar
Mackenzie, D. R., Barfield, C. S., Kennedy, G. G. and Berger, R. D. (eds.) (1986) The Movement and Dispersal of Agriculturally Important Biotic Agents, pp. 1611. Claitors Pub. Div., Baton Rouge, Louisiana.Google Scholar
McGuire, J. U. and Crandall, B. S. (1967) Survey of insect pests and plant diseases of selected crops of Mexico, Central America and Panama. Int. Agric. Dev. Serv. ARS. U.S. Dept. Agric., pp. 1157.Google Scholar
Muller, R. A. (1979) Synoptic weather types along the Gulf Coast: Variability and predictability. In: Movement of Highly Mobile Insects: Concepts and Methodology in Research (Edited by Rabb, R. L. and Kennedy, G. G.), pp. 394405. North Carolina State Univ., Graphics, Raleigh.Google Scholar
Nei, M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583590.CrossRefGoogle ScholarPubMed
Ortega, A. (1974) Maize diseases and pests. In: Proceedings World Wide Maize Improvement in the 70s and the Role of CIMMYT. 7, 141.Google Scholar
Pashley, D. P. (1986) Host associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex? Ann. Ent. Soc. Am. 79, 898904.CrossRefGoogle Scholar
Pashley, D. P., Johnson, S. J. and Sparks, A. N. (1985) Genetic population structure of migratory moths: The fall armyworm (Lepidoptera: Noctuidae). Ann. Ent. Soc. Am. 78, 756762.CrossRefGoogle Scholar
Rabb, R. L. and Kennedy, G. G. (eds.) (1979) Movement of Highly Mobile Insects: Concepts and Methodology in Research, pp. 1456. North Carolina State Univ. Graphics, Raleigh.Google Scholar
Rabb, R. L. and Stinner, R. E. (1978) The role of insect dispersal and migration in population processes. In: Radar, Insect Population Ecology and Pest Management (Edited by Vaughn, C. R., Wolf, W. and Klassen, W.), pp. 316. NASA Conf. Publ. No. 2070.Google Scholar
Rose, A. H., Silversides, R. H. and Lindquist, O. H. (1975) Migration flight by an aphid, Rhopalosiphum maidis (Hemiptera: Aphididae), and a noctuid, Spodoptera frugiperda (Lepidoptera: Noctuidae). Can. Ent. 107, 567576.CrossRefGoogle Scholar
Schwerdtfeger, W. (ed.) (1976) Climates of Central and South America, pp. 1532. Elsevier Scientific Pub. Co. N.Y.Google Scholar
Sluss, T. P. and Graham, H. M. (1979) Allozyme variation in natural populations of Heliothis virescens. Ann. Ent. Soc. Am. 72, 317322.CrossRefGoogle Scholar
Smith, J. E. and Abbott, J. (1797) The natural history of the rarer lepidopterous insects of Georgia. V. 2 illus. London.Google Scholar
Snow, J. W. and Copeland, W. W. (1969) Fall armyworm: Use of virgin female traps to detect males and to determine seasonal distribution. U.S. Dep. Agric. Prod. Res. Rep. No. 110, pp. 19.Google Scholar
Solbreck, C. (1978) Migration, diapause, and direct development as alternative life histories in a seed bug, Neacoryphus bicrucis. In: Evolution of Insect Migration and Diapause (Edited by Dingle, H.), pp. 195217. Springer Verlag, N.Y.CrossRefGoogle Scholar
Sparks, A. N. (1979) A review of the biology of the fall armyworm. Fla. Ent. 62, 8287.CrossRefGoogle Scholar
Sparks, A. N., Jackson, R. D., Carpenter, J. E. and Muller, R. A. (1986) Insects captured in light traps in the Gulf of Mexico. Ann. Ent. Soc. Am. 79, 132139.CrossRefGoogle Scholar
Stinner, R. E., Barfield, C. S., Stimac, J. L. and Dohse, L. (1983) Dispersal and movement of insect pests. Ann. Rev. Ent. 28, 319335.CrossRefGoogle Scholar
Urquhart, F. A. and Urquhart, N. R. (1978) Autumnal migration routes of the eastern population of the monarch butterfly (Danaus p. plexippus L.; Danaidae; Lepidoptera) in North America to the overwintering site in the Neovolcanic Plateau of Mexico. Can. J. Zool. 56, 17591764.CrossRefGoogle Scholar
Urquhart, F. A. and Urquhart, N. R. (1979) Vernal migration of the monarch butterfly (Danaus p. plexippus, Lepidoptera: Danaidae) in North America from the overwintering site in the Neovolcanic Plateau of Mexico. Can. Ent. 111, 1518.CrossRefGoogle Scholar
Van Handel, E. (1974) Lipid utilization during sustained flight of moths. J. Insect. Physiol. 20, 23292332.CrossRefGoogle ScholarPubMed
Vickery, R. A. (1929) Studies of the fall armyworm in the Gulf Coast district of Texas. U.S. Dept. Agric. Tech. Bull. No. 138, pp. 164.Google Scholar
Walker, T. J. (1980) Migrating Lepidoptera: Are butterflies better than moths? Fla. Ent. 63, 7998.CrossRefGoogle Scholar
Wolf, W. W., Sparks, A. N., Pair, S. D., Westbrook, J. K. and Truesdale, F. M. (1986) Radar observations and collections of insects in the Gulf of Mexico. In: Insect Flight: Dispersal and Migration (Edited by Danthanarayana, W.), pp. 221234. Springer-Verlag Berlin.CrossRefGoogle Scholar
Wright, S. (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395420.CrossRefGoogle Scholar
Young, J. R. (1979) Assessing the movement of fall armyworm (Spodoptera frugiperda) using insecticide resistance and wind patterns. In: Movement of Highly Mobile Insects: Concepts and Methodology in Research. (Edited by Rabb, R. L. and Kennedy, G. G.), pp. 344351. North Carolina State Univ. Graphics, Raleigh.Google Scholar