Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-05T17:59:27.915Z Has data issue: false hasContentIssue false

Managing Termites in Maize with the Entomopathogenic Fungus Metarhizium anisopliae

Published online by Cambridge University Press:  19 September 2011

N.K. Maniania*
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, 00506 Nyayo Stadium, Nairobi, Kenya
S. Ekesi
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, 00506 Nyayo Stadium, Nairobi, Kenya
J. M. Songa
Affiliation:
Kenya Agricultural Research Institute (KARI), Katumani, P. O. Box 340, Machakos, Kenya
Get access

Abstract

Field experiments were conducted for two seasons to assess the efficacy of the entomopathogenic fungus Metarhizium anisopliae in the control of termites in maize. Application of the fungus at planting was found to significantly reduce maize lodging and increase grain yield in both seasons. However, data from treatment application at tasselling were not consistent. Our results suggest that a granular formulation of M. anisopliae might be a useful option for the management of termites in the maize agroecosystem.

Résumé

Des expérimentations en plein champs ont été conduites durant deux saisons afin d'évaluer l'efficacité du champignon entomopathogène Metarhizium anisopliae pour la lutte contre les termites sur les cultures de maïs. L'application du champignon au moment de la semis s'est révélée très efficace en réduisant la chute des plants de maïs d'une part, et en augmentant le rendement en grains d'autre part, pendant les deux saisons. Cependant, les résultats issus des traitements pendant l'inflorescence des plants de maïs n'étaient pas consistants. Nos résultats suggèrent donc que la formulation du champignon M. anisopliae en granules serait une option appropriée pour le contrôle des termites dans les cultures de maïs.

Type
Research Articles
Copyright
Copyright © ICIPE 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdulrahman, A. (1990) Foraging activity and control of termites in western Ethiopia, PhD thesis, University of London, 277 pp.Google Scholar
Booth, S. R., Tanigoshi, L. and Dewes, I. (2000) Potential of a dried mycelium formulation of an indigenous strain of Metarhizium anisopliae against subterranean pests of cranberry. Biocontrol Sci. Technol. 10, 659668.CrossRefGoogle Scholar
Cowie, R. H. and Wood, T. G. (1989) Damage to crops, forestry and range-land by fungus-growing termites (Termitidae: Macrotermitinae) in Ethiopia. Sociobiology 15, 139153.Google Scholar
Dent, D. (1999) Green Muscle® registered in South Africa. Biol. News Inf. 20, 9N.Google Scholar
EcoScience (1997) Bio-Blast™ biological termiticide. http:/wwiv.ecoscience.com/bioblas/bio-blas.html.Google Scholar
Fernandes, P.M. and Alves, S.B. (1991) Control of Cornitermes cumulans (Kollar 1832) (Isoptera: Termitidae) with Beanveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok, under field conditions. Ann. Entomol. Soc. Brazil 20, 4550.CrossRefGoogle Scholar
Gethi, M., Gitonga, W. and Ochiel, G. R. S. (1995) Termite damage and control options in eastern Kenya. In Proceedings of 2nd Regional Workshop on Termite Research and Control, 79 March 1995, Nairobi, Kenya.Google Scholar
Gitonga, W. (1992) Termicidal screening and assessment of termite damage in agriculture and forestry in Kenya. In Proceedings 1st Regional Workshop on Termite Research and Control, 1719 August 1990, Nairobi, Kenya.Google Scholar
Gitonga, W. (1996) Metarhizium anisopliae (Metschnikoff) Sorokin and Beauveria bassiana (Balsamo) Vuillemin as potential biological control agents ai Macrotermes michaelseni (Sjostedt) (Isoptera: Termitidae) in Kenya. PhD thesis. Royal Veterinary and Agricultural University, Copenhagen, Denmark.Google Scholar
ICIPE (1997) Annual Scientific Report, 1995–1997, International Centre of Insect Physiology and Ecology, Nairobi, Kenya.Google Scholar
Ko, W. H., Fuji, J. K. and Kanegawa, K. M. (1982) The nature of soil pernicious to Coptotermes formosamis. J. Invertebr. Pathol. 39, 3840.Google Scholar
Krueger, S. R., Villani, M. G., Martins, A. S. and Roberts, D. W. (1992) Efficacy of soil application of Metarhizium anisopliae (Metsch.) Sorokin conidia, and standard and lyophilized mycelial particles against scarab grubs, J. Invertebr. Pathol. 59, 5460.Google Scholar
Logan, J. W. M., Cowie, R. H. and Wood, T. G. (1990) Termite (Isoptera) control in agriculture and forestry by nonchemical methods: A review. Bull. Entomol. Res. 80, 309330.Google Scholar
Milner, R. J. and Staples, J. A. (1996) Biological control of termites—results and experiences within a CSIRO project in Australia. Biocontrol Sci. Technol. 6, 39.Google Scholar
Nkunika, O. Y. P. (1999) Potential use of entomopathogenic fungi for the control of termites in cassava fields, pp. 263268. In Proceedings of the First Scientific Workshop of the Southern African Root Crops Research Network (SARRNET) (Edited by Akoroda, M. O. and Teri, J. M.), Zambia.Google Scholar
Ochiel, G. R. S., Gitonga, W. and Kusewa, T. M. (1995) Comparison of chemical and cultural treatments against termites (Isoptera: Termitidae) in western Kenya. In Proceedings, 2nd Regional Workshop on Termite Research and Control, 79 March 1995, Nairobi, Kenya.Google Scholar
Polaszek, A. (Ed.) (1998) African Cereal Stern Borers: Economic Importance, Taxonomy, Natural Enemies and Control. CAB International, Oxon, 530 pp.Google Scholar
Prior, C. (1988) Biological pesticides for low external-, input agriculture. Biol. News Info. 10, 1722.Google Scholar
Rath, A. C. (2000) The use of entomopathogenic fungi for termite control. Biocontrol Sci. Technol. 10, 563581.Google Scholar
Sands, W. A. (1977) The role of termites in tropical, agriculture. Outlook Agric. 9, 136143.Google Scholar
SAS Institute (1990) SAS/STAT User's Guide, Version 6, 4th Edition, Vol. 2. SAS Institute, Cary, NC.Google Scholar
Sekamatte, M. B. (2000) Options for integrated management of termites (Isoptera: Termitidae) in smallholder maize-based cropping systems in Uganda. PhD thesis submitted to Makerere University, Uganda.Google Scholar
Umeh, V. C. and Ivbijaro, M. F. (1997) Termite abundance and damage in traditional maize-cassava intercrops in southwestern Nigeria. Insect Sci. Applic. 17, 315321.Google Scholar
United Nations (1987) Consolidated List of Products Where Consumption and/or Sale Have Been Banned, Withdrawn, Severely Restricted or Not Approved by Governments. New York, United Nations (United Nations Pubi. ST/ESA/192).Google Scholar
Wightman, J. A. (1991) Soil insect problem in African groundnut crops, pp. 171176. In Advances in Management and Conservation of Soil Fauna (Edited by Veeresh, G.K., Rajagopal, D. and Viraktamath, C.A.). Oxford/IBH Publ., New Delhi.Google Scholar
Wood, T. G. (1986) Report on a visit to Ethiopia to advise on assessment of termite damage to crops. Report R1347 (R). ODNRI, London.Google Scholar
Wood, T. G., Bednarzik, M. and Aden, H. (1987) Damage to crops by Microtermes najdensis (Isoptera, Macrotermitinae) in irrigated semi-desert areas of the Red Sea coast. 1. The Tihama region of the Yemen Arab Republic. Trop. Pest Manage. 33, 142150.Google Scholar
Wood, T. G., Johnson, R. A. and Ohiagu, C. E. (1980) Termite damage and crop loss studies in Nigeria— A review of termite damage to maize and estimation of damage, loss of yield and Microtermes abundance at Mokwa. Trop. Pest Manage. 26, 241253.Google Scholar