Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-03T06:20:43.697Z Has data issue: false hasContentIssue false

Growth and development of melon fruit fly larvae under the influence of soybean trypsin inhibitors

Published online by Cambridge University Press:  21 December 2010

Harpreet Kaur
Affiliation:
Insect Physiology Laboratory, Zoology Department, Guru Nanak Dev University, Amritsar, Punjab, 143 005India Eternal University, Baru Sahib, Via Rajgarh, District Sirmour, Himachal Pradesh173 101, India
Satwinder K. Sohal*
Affiliation:
Insect Physiology Laboratory, Zoology Department, Guru Nanak Dev University, Amritsar, Punjab, 143 005India
Pushpinder J. Rup
Affiliation:
Insect Physiology Laboratory, Zoology Department, Guru Nanak Dev University, Amritsar, Punjab, 143 005India
Amandeep Kaur
Affiliation:
Insect Physiology Laboratory, Zoology Department, Guru Nanak Dev University, Amritsar, Punjab, 143 005India
Get access

Abstract

Protease inhibitors (PIs) retard growth and development and cause mortality in a range of insect pests belonging to various orders. Some transgenic plants expressing PI genes have also been effective against insect pest attack. The effects of two purified soybean PIs, i.e. trypsin inhibitor (Kunitz type; SBTI) and trypsin–chymotrypsin inhibitor (Bowman-Birk type; SBBI), were investigated on first and third instar larvae of the melon fruit fly Bactrocera cucurbitae (Coquillett) in laboratory feeding bioassays. The larval period of both the first and third instar larvae was prolonged when the larvae were treated with various concentrations of SBTI and SBBI. The total development period prolonged significantly in both the instars of larvae treated with SBTI, but in SBBI-treated larvae, the development period was delayed significantly only in the third instar larvae. A decrease in percentage pupation and adult emergence was observed in the first and third instar larvae treated with different concentrations of both SBTI and SBBI. The present studies showed that SBTI and SBBI have a potential in inhibiting the growth and development of melon fruit fly, but further detailed and molecular level studies are required before their use in transgenics.

Type
Research Paper
Copyright
Copyright © ICIPE 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allwood, A. J., Chinajariyawong, A., Drew, R. A. I., Hamacek, E. L., Hancock, D. L., Hengsawad, C., Krisaneepaiboon, S., Leong, C. S. T. and Vijaysegeran, S. (1999) Host plant records of fruit flies (Diptera: Tephritidae) in Southeast Asia. The Raffles Bulletin of Zoology Supplement 7, 192.Google Scholar
Araujo, C. L., Bezerra, I. W. L., Oliveira, A. S., Moura, F. T., Macedo, L. L. P., Gomes, C. E. M., Barbosa, A. E. A. D. and Sales, M. P. (2005) In vivo bioinsecticidal activity toward Ceratitis capitata (fruit fly) and Callosobruchus maculatus (cowpea weevil) and in vitro bioinsecticidal activity toward different orders of insect pests of a trypsin inhibitor purified from tamarind tree (Tamarindus indica) seeds. Journal of Agricultural and Food Chemistry 53, 43814387.CrossRefGoogle ScholarPubMed
Bhavani, P., Bhattacherjee, C. and Prasad, D. T. (2007) Bioevaluation of Subabul (Leucaena leucocephala) proteinase inhibitors on Helicoverpa armigera. Arthropod–Plant Interactions 1, 255261.CrossRefGoogle Scholar
Broadway, R. M. (1995) Are insects resistant to plant proteinase inhibitors? Journal of Insect Physiology 41, 107116.CrossRefGoogle Scholar
Broadway, R. M. (1997) Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. Journal of Insect Physiology 43, 855874.CrossRefGoogle ScholarPubMed
Chen, M. S., Johnson, B., Wen, L., Muthukrishnan, S., Kramer, K. J., Morgan, T. D. and Reeck, G. R. (1992) Rice cystatin: bacterial expression, purification, cysteine proteinase inhibiting activity and insect growth inhibiting activity of a truncated form of rice cystatin. Protein Expression and Purification 3, 4149.CrossRefGoogle ScholarPubMed
Chougule, N. P., Hivrale, V. K., Chhabda, P. J., Giri, A. P. and Kachole, M. S. (2003) Differential inhibition of Helicoverpa armigera gut protienase inhibitors of pigeon pea (Cajanus cajan) and its wild relatives. Phytochemistry 64, 681687.CrossRefGoogle Scholar
Gatehouse, L. N., Christeller, J. T., Gatehouse, H. S. and Zou, X. Y. (2002) A strong inhibitor of chymotrypsin/elastase is highly antimetabolic to Helicoverpa armigera larvae. New Zealand Journal of Plant Protection 55, 421428.CrossRefGoogle Scholar
Gomes, C. E. M., Barbosa, A. E. A. D., Macedo, L. L. P., Pitanga, J. C. M., Moura, F. T., Oliveira, A. S., Moura, R. M., Queiroz, A. F. S., Macedo, F. P., Andrade, L. B. S., Vidal, M. S. and Sales, M. P. (2005) Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiology and Biochemistry 43, 10951102.CrossRefGoogle ScholarPubMed
Gupta, J. N., Verma, A. N. and Kashyap, R. K. (1978) An improved method for mass rearing for melon fruit fly Dacus cucurbitae Coquillett. Indian Journal of Entomology 40, 470471.Google Scholar
Hines, M. E., Osuala, C. I. and Nielson, S. S. (1991) Isolation and partial characterization of a soybean cystatin cysteine proteinase inhibitor of coleopteran digestive proteolytic activity. Journal of Agricultural and Food Chemistry 39, 15151520.CrossRefGoogle Scholar
Hinks, C. F. and Hupka, D. (1995) The effects of feeding leaf sap from oats and wheat, with and without soybean trypsin inhibitor, on feeding behavior and digestive physiology of adult males of Melanoplus sanguinipes. Journal of Insect Physiology 41, 10071015.CrossRefGoogle Scholar
Johnston, K. A., Gatehouse, J. A. and Anstee, J. H. (1993) Effects of soybean protease inhibitors on the growth and development of larval Helicoverpa armigera. Journal of Insect Physiology 39, 657664.CrossRefGoogle Scholar
Jongsma, M. A. and Bolter, C. (1997) The adaptation of insects to plant protease inhibitors. Journal of Insect Physiology 43, 885895.CrossRefGoogle Scholar
Kansal, R., Gupta, R., Koundal, K., Kuhar, K. and Gupta, V. (2008) Purification, characterization and evaluation of insecticidal potential of trypsin inhibitor from mungbean (Vigna radiata L. Wilczek) seeds. Acta Physiologiae Plantarum 30, 761768.CrossRefGoogle Scholar
Liang, C., Brookhart, G., Feng, G. H., Reeck, G. R. and Kramer, K. J. (1991) Inhibition of digestive proteinases of stored grain Coleoptera by oryzacystatin, a cysteine proteinase inhibitor from rice seed. FEBS Letters 2, 139142.CrossRefGoogle Scholar
Lipke, H., Fraenkel, G. S. and Liener, I. E. (1954) Effects of soybean inhibitors on growth of Tribolium confusum. Journal of the Science of Food and Agriculture 2, 410415.Google Scholar
Macedo, M. L. R., De Sa, C. M., Freire, M. D. G. M. and Parra, J. R. P. (2004) A Kunitz-type inhibitor of coleopteran proteases, isolated from Adenanthera pavonina L. seeds and its effect on Callosobruchus maculatus. Journal of Agricultural and Food Chemistry 52, 25332540.CrossRefGoogle ScholarPubMed
Macedo, M. L. R., Freire, M. D. G. M., Cabrini, E. C., Toyama, M. H., Novello, J. C. and Marangoni, S. (2003) A trypsin inhibitor from Peltophorum dubium seeds active against pest protease and its effect on the survival of Anagasta kuehniella (Lepidoptera: Pyralidae). Biochimica et Biophysica Acta 1621, 170182.CrossRefGoogle Scholar
McManus, M. T. and Burgess, E. P. J. (1995) Effects of soybean (Kunitz) trypsin inhibitor on growth and digestive proteases of larvae of Spodoptera litura. Journal of Insect Physiology 41, 731738.CrossRefGoogle Scholar
Mochizuki, A., Nishizawa, Y., Onodera, H., Tabei, Y., Toki, S., Habu, Y., Ugaki, M. and Ohashi, Y. (1999) Transgenic rice plants expressing a trypsin inhibitor are resistant against rice stem borers, Chilo suppressalis. Entomologia Experimentalis et Applicata 93, 173178.CrossRefGoogle Scholar
Oliveira, A. S., Pereira, R. A., Lima, L. M., Morais, A. H. A., Melo, F. R., Franco, O. L., Bloch, J. R. C., Grossi-De Sa, M. F. and Sales, M. P. (2002) Activity toward bruchid pest of a Kunitz-type inhibitor from seeds of the Algaroba tree (Prosopis juliflora D.C.). Pesticide Biochemistry and Physiology 72, 122132.CrossRefGoogle Scholar
Pereira, M. E., Dorr, F. A., Peixoto, N. C., Lima-Garcia, J. F., Dorr, F. and Brito, G. G. (2005) Perspectives of digestive pest control with proteinase inhibitors that mainly affect the trypsin-like activity of Anticarsia gemmatalis Hubner (Lepidoptera: Noctuidae). Brazilian Journal of Medical and Biological Research 38, 16331641.CrossRefGoogle ScholarPubMed
Pompermayer, P., Lopes, A. R., Terra, W. R., Parra, J. R. P., Falco, M. C. and Silva-Filho, M. C. (2001) Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis. Entomologia Experimentalis et Applicata 99, 7985.CrossRefGoogle Scholar
Ryan, C. A. (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annual Review of Phytopathology 28, 425449.CrossRefGoogle Scholar
Seldal, T., Dybwad, E., Andersen, K. J. and Hoegstedt, G. (1994) Wound-induced proteinase inhibitors in grey alder (Alnus incana): a defence mechanism against attacking insects. Oikos 71, 239245.CrossRefGoogle Scholar
Shukla, S., Arora, R. and Sharma, H. C. (2005) Biological activity of soybean trypsin inhibitor and plant lectins against cotton bollworm/legume podborer, Helicoverpa armigera. Plant Biotechnology 22, 16.CrossRefGoogle Scholar
Silva, F. C. B. L., Alcazar, A., Macedo, L. L. P., Oliveira, A. S., Macedo, F. P., Abreu, L. R. D., Santos, E. A. and Sales, M. P. (2006) Digestive enzymes during development of Ceratitis capitata (Diptera: Tephritidae) and effects of SBTI on its digestive serine proteinase targets. Insect Biochemistry and Molecular Biology 36, 561569.CrossRefGoogle ScholarPubMed
Singh, S. V., Mishra, A., Bisan, R. S., Malik, Y. P. and Mishra, A. (2000) Host preference of red pumpkin beetle, Aulacophora foveicollis and melon fruit fly, Dacus cucurbitae. Indian Journal of Entomology 62, 242246.Google Scholar
Srinivasan, A., Giri, A. P., Harsulkar, A. M., Gatehouse, J. A. and Gupta, V. S. (2005) A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae. Plant Molecular Biology 53, 359374.CrossRefGoogle Scholar
Srivastava, B. G. (1975) A chemically defined diet for Dacus cucurbitae (Coquillett) larvae under aseptic conditions. Entomology News Letters 5, 24.Google Scholar
Steffens, R., Fox, F. R. and Kassell, B. (1978) Effect of trypsin inhibitors on growth and metamorphosis of corn borer larvae Ostrinia nubilalis (Hubner). Journal of Agricultural and Food Chemistry 26, 170174.CrossRefGoogle Scholar
Tamhane, V. A., Chougule, N. P., Giri, A. P., Dixit, A. R., Sainani, M. N. and Gupta, V. S. (2005) In vivo and in vitro effects of Capsicum annum proteinase inhibitors on Helicoverpa armigera gut proteinases. Biochimica et Biophysica Acta 1722, 156167.CrossRefGoogle ScholarPubMed
Telang, M., Srinivasan, A., Patankar, A., Harsulkar, A., Joshi, V., Deshpande, V., Sainani, M., Ranjekar, P., Gupta, G., Birah, A., Rani, S., Kachole, M., Giri, A. and Gupta, V. (2003) Bittergourd proteinase inhibitors: potential growth inhibitors of Helicoverpa armigera and Spodoptera litura. Phytochemistry 63, 643652.CrossRefGoogle Scholar