Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T23:37:23.588Z Has data issue: false hasContentIssue false

Evaluation of Bacillus thuringiensis H-14 isolates from Nigerian soils for use in mosquito control

Published online by Cambridge University Press:  19 September 2011

Jason A. N. Obeta
Affiliation:
Department of Life Sciences, Ben Gurion University of the Negev P. O. B. 653, Beer Sheva 84105, Israel
Arieh Zaritsky
Affiliation:
Department of Life Sciences, Ben Gurion University of the Negev P. O. B. 653, Beer Sheva 84105, Israel
Zeev Barak
Affiliation:
Department of Life Sciences, Ben Gurion University of the Negev P. O. B. 653, Beer Sheva 84105, Israel
Get access

Abstract

Eleven mosquitocidal Bacillus thuringiensis isolates from Nigerian soils were screened for the degree of toxicity against Aedes aegypti larvae. The six most larvicidal isolates, code-named OBGI, OBG8, BUS4, BAR3, GSC3 and GNA13, were identified as subsp. israelensis (B.t.i). Spores of the six isolates of a B. t. i. from a commercial powder (R-153–78, Roger Bellon Laboratory, Belgium) and of IPS 82 (Institut Pasteur (Standards)) were subjected to ultraviolet irradiation (280–350 nm) for up to 75 min. After irradiation, the toxicity of OBG8, OBGI, BUS4, and BAR3 was higher than that of R-153–78 but lower than that of IPS 82.

Résumé

Onze isolats (aux propriétés anti-moustiques) de Bacillus thuringiensis provenant des sols nigérians ont été passés au crible concernant leur degré de toxicité a l'égard des larves d'Aedes aegypti. Les 6 isolats ayant les plus fortes activités larvicides et désignés sous les codes OBG1, OBG8, BUS4, BAR3, GSC3 et GNA13, ont été identifiés en tant que sous-espèces israelensis (B. t. i.). Les spores des 6 isolats d'une B. t. i. provenant d'une poudre commerçiale (R-153–78; Laboratoire Roger Bellon, Belgique) et celle du IPS 82 (Institut Pasteur (Standards)), ont été soumis à l'irradiation aux ultra-violets (280–350 nm) pendant 75 min. Aprés irradiation, la toxicité de OBG8, OBG1, BUS4 et BAR3 a été supérieure à celle de R-153–78, mais inférieure à celle de IPS 82.

Type
Research Articles
Copyright
Copyright © ICIPE 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265267.CrossRefGoogle Scholar
Abdel-Hameed, A., Carlberg, G. and El-Tayeb, O. M. (1990) Studies on Bacillus thuringiensis H-14 strains isolated in Egypt. Screening for active strains. World J. Microbiol. Biotechnol. 6, 299304.CrossRefGoogle Scholar
Balaraman, K., Hoti, S. L. and Manonmani, L. M. (1981) An indigenous virulant strain of Bacillus thuringiensis highly pathogenic and specific to mosquitoes. Current Science 50, 199200.Google Scholar
Brownbridge, M. and Margalit, J. (1986) New Bacillus thuringiensis strains isolated in Israel are highly toxic to mosquito larvae. J. Invertebr. Pathol. 48, 216222.CrossRefGoogle ScholarPubMed
Busvine, J. R. (1971) A Critical Review of the Techniques for Testing Insecticides, 2nd edn. pp. 263288. Commonwealth Agricultural Bureaux, London.Google Scholar
Cantwell, G. E. (1967) Inactivation of biological insecticides by irradiation. J. Invertebr. Pathol. 9, 138140.CrossRefGoogle ScholarPubMed
Cantwell, G. E. and Franklin, B. A. (1966) Inactivation by irradiation of spores of Bacillus thuringiensis var. thuringiensis. J. Invertebr. Pathol. 8, 256258.CrossRefGoogle ScholarPubMed
Davidson, E. W. and Sweeny, A. W. (1983) Microbial control of vectors: A decade of progress. J. Med. Entomol. 20, 235247.CrossRefGoogle ScholarPubMed
de Barjac, H. (1983) Bioassay procedure for samples of Bacillus thuringiensis var. israelensis using IPS-82 standard WHO Report TDR/VED/SWG (5) (81.3).Google Scholar
de Barjac, H. (1990) Characterization and prospective view of Bacillus thuringiensis israelensis. In Bacterial Control of Mosquitoes and Black Flies (Edited by de Barjac, H. and Sutherland, D. J.), pp. 1015. Rutgers University Press, New Brunswick.CrossRefGoogle Scholar
Dulmage, H. T., Correa, J. A. and Martinez, A. J. (1970) Coprecipitation with lactose as a means of recovering the spore-crystal complex of Bacillus thuringiensis J. Invertebr. Pathol. 15, 1520.CrossRefGoogle Scholar
Fisher, R. A. and Yates, F. (1964) Statistical tables for biological, agricultural and medical research, reproduced in Finney J. D. (1971) Probit Analysis 3rd edn. pp. 283310. Cambridge University Press, Cambridge.Google Scholar
Goldberg, L. J. and Margalit, J. (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitatus, Aedes aegypti and Culex pipiens. Mosq. News 37, 355358.Google Scholar
Griego, V. M. and Spence, K. D. (1978) Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl. Environ. Microbiol. 35, 906910.CrossRefGoogle ScholarPubMed
Guillet, P., Kurtak, D. C., Philippon, B. and Mayer, R. (1990) Use of Bacillus thuringiensis israelensis for onchocerciasis control in West Africa. In Bacterial Control of Mosquitoes and Black Flies (Edited by de Barjac, H. and Sutherland, D. J.), pp. 187201. Rutgers University Press, New Brunswick.CrossRefGoogle Scholar
Molloy, D. P. (1990) Progress in the biological control of black flies with Bacillus thuringiensis israelensis with emphasis on temperate climates. In Bacterial Control of Mosquitoes and Black Flies (Edited by de Barjac, H. and Sutherland, D. J.), pp. 161186. Rutgers University Press, New Brunswick.CrossRefGoogle Scholar
Mulla, M. S. (1990) Activity, field efficacy and use of Bacillus thuringiensis israelensis against mosquitoes. In Bacterial Control of Mosquitoes and Black Flies (Edited by de Barjac, H. and Sutherland, D. J.), pp. 134160. Rutgers University Press, New Brunswick.CrossRefGoogle Scholar
Priest, F. G. (1992) Biological control of mosquitoes and other biting flies by Bacillus sphaericus and Bacillus thuringiensis. J. Appl. Bacteriol. 72, 357369.CrossRefGoogle ScholarPubMed
Raun, E. S., Sutter, G. R. and Revelo, M. A. (1966) Ecological factors affecting the pathogenicity of Bacillus thuringiensis var. thuringiensis to the European corn borer and fall armyworm. J. Invertebr. Pathol. 8, 365375.CrossRefGoogle Scholar
Singer, S. (1975) Isolation and development of bacterial pathogens of vectors. In Biological Regulation of Vectors (Edited by Briggs, J. D.), pp. 318. DHEW Publication (NIH), Washington DC.Google Scholar
Sutherland, D. J. (1990) The future of bacterial control of mosquito and black fly larvae. In Bacterial Control of Mosquitoes and Black Flies (Edited by de Barjac, H. and Sutherland, D. J.), pp. 335342. Rutgers University Press, New Brunswick.Google Scholar
Walsh, J. (1986) River blindness, a gamble pays off. Science (USA) 232, 922925.CrossRefGoogle ScholarPubMed
Zhang, Y., Ku, Z., Chen, Z., Xu, B., Yuan, F., Chen, G., Zhong, T. and Ming, G. (1984) A new isolate of Bacillus thuringiensis possessing high toxicity towards mosquitoes. Acta Microbiol. Sinica 24, 320325.Google Scholar