Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T18:09:11.369Z Has data issue: false hasContentIssue false

Efficacy and Deployment of Transgenic Plants for Stemborer Management

Published online by Cambridge University Press:  19 September 2011

David Bergvinson
Affiliation:
International Center of Maize and Wheat Improvement (CIMMYT), Lisboa 06600, Mexico D.F., Mexico
Martha Willcox
Affiliation:
International Center of Maize and Wheat Improvement (CIMMYT), Lisboa 06600, Mexico D.F., Mexico
David Hoisington
Affiliation:
International Center of Maize and Wheat Improvement (CIMMYT), Lisboa 06600, Mexico D.F., Mexico
Get access

Abstract

Transgenic plants expressing Bacillus thuringiensis δ-endotoxins are now being used commercially in several crop species. These toxins have demonstrated good control of temperate (Ostrinia nubilalis) and tropical (Diatraea grandiosella and D. saccharalis) stemborers in maize. Resistance to B. thuringiensis toxins has been reported in over 11 species in both field and laboratory studies, demonstrating the need for resistance management strategies to prolong the efficacy of this valuable pest management tool within an integrated control programme. Resistance involves reduced binding of toxins to midgut epithelial cells and is generally considered to be a recessive trait. Resistance management will require the use of spatial and temporal refugia which may require unique schemes for each pest complex. Information is presented on the mode of action of cry toxins, resistance mechanisms, interaction of transgenic plants and biocontrol agents, and management/deployment strategies for transgenic maize in tropical ecologies.

Type
Articles
Copyright
Copyright © ICIPE 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adkisson, P. L. and Dyck, V. A. (1980) Resistant varieties in pest management systems, pp. 233253. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.). Wiley, New York.Google Scholar
Armstrong, C. L., Parker, G. B., Pershing, J. C., Brown, S. M., Sanders, P. R., Duncan, D. R., Stone, T., Dean, D. A., DeBoer, D. L., Hart, J., Howe, A. R., Morrish, F. M., Pajeau, M. E., Petersen, W. L., Reich, B. J., Rodriguez, R., Santino, C. G., Sato, S. J., Schuler, W., Sims, S. R., Stehling, S., Tarochione, L. J. and Fromm, M. E. (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein fro. Bacillus thuringiensis. Crop Sci. 35, 550557.Google Scholar
Barbosa, P., Saunders, J. A., Kemper, J., Trumbule, R., Olechno, J. and Martinet, P. (1986) Plant allelochemicals and insect parasitoids: Effects of nicotine o. Cotesia congregata (Say) (Hymenoptera: Braconidae) and Hyposoter annulipes (Cresson) (Hymenoptera: Ichneumonidae). J. Chem. Ecol. 12, 13191328.Google Scholar
Bennett, J. (1994) DNA-based techniques for control of rice insects and diseases: Transformation gene tagging and DNA fingerprinting, pp. 147172. In Rice Pest Science and Management (Edited by Teng, P. S., Heong, K. L. and Moody, K.). International Rice Research Institute, Los Banos, Philippines.Google Scholar
Bevan, M., Flavell, R. N. and Chilton, M. D. (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304, 184187.Google Scholar
Charles, J.-F., Nielsen-LeRoux, C. and Delecluse, A. (1996) Bacillus sphaericus toxins: Molecular biology and mode of action. Annu. Rev. Entomol. 41, 451472.Google Scholar
Choma, C. T., Surewicz, W. K., Carey, P. R., Pozsgay, M. and Raynor, T. (1990) Unusual proteolysis of the protoxin and toxin fro. Bacillus thuringiensis: Structural implications. Eur. J. Biochem. 189, 523527.Google Scholar
Croft, B. A. (1990) Arthropod Biological Control Agents and Pesticides. John Wiley and Sons, New York. 723 pp.Google Scholar
English, L. and Slatin, S. L. (1992) Mode of action of 6-endotoxins fro. Bacillus thuringiensis: A comparison with other bacterial toxins. Insect Biochem. Molec. Biol. 22, 17.Google Scholar
Ferre, J. S., Real, M. D., van Rie, J., Jansens, S. and Peferoen, M. (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88, 51195123.Google Scholar
Gibson, D. M., Gallo, L. G., Krasnoff, S. B. and Ketchum, R. E. B. (1995) Increased efficiency o. Bacillus thuringiensis subsp. kurstaki in combination with tannic acid. J. Econ. Entomol. 88, 270277.Google Scholar
Gill, S. S., Cowles, E. A. and Pietrantonio, F. V. (1992) The mode of action o. Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37, 615636.Google Scholar
Giroux, S., Cot, J. C., Vincent, C., Martel, P. and Coderre, D. (1994) Bacteriological insecticide M-one effects on predation efficiency and mortality of adult Coleomegilla maculata lengi (Coleoptera: Coccinellidae). J. Econ. Entomol. 87, 39–13.Google Scholar
Gould, F. (1986) Simulation models for predicting durability of insect-resistant germplasm: A deterministic diploid, two-locus model. Environ. Entomol. 15, 110.Google Scholar
Gould, F. (1994) Potential and problems with high dose strategies for pesticidal engineered crops. Biocontrol Science & Technol. 4, 451461.Google Scholar
Gould, F. and Anderson, A. (1991) Effects o. Bacillus thuringiensis and HD-73 delta-endotoxin on growth, behavior, and fitness of susceptible and toxin-adapted strains of Heliothis virescens (Lepidoptera: Noctuidae). Environ. Entomol. 20, 3038.Google Scholar
Gould, F., Anderson, A., Reynolds, A., Bumgarner, L. and Moar, W. (1995) Selection and genetic analysis o. Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88, 15451559.Google Scholar
Gould, F., Martinez-Ramirez, A., Anderson, A., Ferré, J., Silva, F. J. and Moar, W. (1992) Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA 89, 79867990.Google Scholar
Höfte, H. and Whiteley, H. R. (1989) Insecticidal crystal proteins o. Bacillus thuringiensis. Microbiol. Rev. 53, 242255.Google Scholar
Johnson, D. E., Brookhart, G. L., Kramer, K. J., Barnett, B. D. and McGaughey, W. H. (1990) Resistance t. Bacillus thuringiensis by the Indian meal moth Plodia interpunctella: Comparison of midgut proteinases from susceptible and resistant larvae. J. Invertebr. Pathol. 55, 235243.Google Scholar
Johnson, M. T. and Gould, R. (1992) Interaction of genetically engineered host plant resistance and natural enemies o. Heliothis virescens (Lepidoptera: Noctuidae) in tobacco. Environ. Entomol. 21, 586597.Google Scholar
Keller, M., Sneh, B., Strizhov, A., Prudovsky, N., Regev, A., Koncz, C., Schell, J. and Zilberstein, A. (1996) Digestion #1-endotoxinby gut proteases may explain reduced sensitivity of advanced instars o. Spodoptera littoralis to CryIC. Insect Biochem. Molec. Biol. 26, 365373.Google Scholar
Knowles, B. H. and Dow, J. A. T. (1993) The crystal-endotoxin of Bacillus thuringiensis: Models for their mechanism of action on the insect gut. Bioessays 15, 469.Google Scholar
Koziel, M. G., Beland G., L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M. R., Merlin, E., Rhodes, R., Warren, G. W., Wright, M. and Evola, S. V. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived fro. Bacillus thuringiensis. Bio/Technology 11, 194200.Google Scholar
Lee, M. K., Milne, R. E., Ge, A. Z. and Dean, D. H. (1992) Location o. Bombyx mori receptor binding on Bacillus thuringiensis delta-endotoxin. J. Biol. Chem. 267, 31153121.Google Scholar
Li, J., Carroll, J. and Ellar, D. J. (1991) Crystal structure of insecticidal #1-endotoxin fro. Bacillus thuringiensis at 2.5 Å resolution. Nature 353, 815817.Google Scholar
McGaughey, W. H. and Whalon, M. E. (1992) Managing insect resistance t. Bacillus thuringiensis toxins. Science 258, 14511455.Google Scholar
Mihm, J. A. (1989) Evaluating maize for resistance to tropical stem borers, armyworm, and earworms, pp. 109121. In Toward Insect Resistant Maize for the Third World. Proceedings of the International Symposium on Methodologies for Developing Host Plant Resistance to Maize Insects, 9–14 March 1987, CIMMYT, Mexico. CIMMYT, Mexico, Mexico D.F.Google Scholar
Perlak, F. J., Fuchs, R. L., Dean, D. A., McPherson, S. L. and Fischoff, D. A. (1991) Modification of coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88, 33243328.Google Scholar
Raineri, D. M., Bottino, P., Gordon, M. P. and Nester, E. W. (1990) Agrobacterium-mediated transformation of ric. (Oryza sativa L.). Biotechnology 8, 3338.Google Scholar
Rossiter, M., Yendol, W. G. and Dubois, N. R. (1990) Resistance t. Bacillus thuringiensis in gypsy moth (Lepidoptera: Lymantriidae): Genetic and environmental causes. J. Econ. Entomol. 83, 22112218.Google Scholar
Salama, H. S. and Sharaby, A. (1985) Histopathological changes i. Heliothis armigera infected with Bacillus thuringiensis as detected by electron microscopy. Insect Sci. Applic. 6, 503511.Google Scholar
Schwartz, J. L., Garneau, L., Savaria, D., Masson, L., Brousseau, R. and Rousseau, E. (1993) Lepidopteran-specific crystal toxins fro. Bacillus thuringiensis form cation and anion-selective channels in planar lipid bilayer. J. Membrane Biol. 132, 5362.Google Scholar
Serratos, J. A., Willcox, M. C. and Castillo-Gonzalez, F. (Eds) (1997) Gene Flow Among Maize Landraces, Improved Maize Varieties, and Teosinte: Implications for Transgenic Maize. CIMMYT, Mexico, D.F.122 pp.Google Scholar
Shelton, A. M., Robertson, J. L., Tang, J. D., Perez, C., Eigenbrode, S. D., Preisler, H. K., Wilsey, W. T. and Cooley, R. J. (1993) Resistance of diamondback moth (Lepidoptera: Plutellidae) t. Bacillus thuringiensis subspecies in the field. J. Econ. Entomol. 86, 697705.Google Scholar
Sneh, B. and Schuster, S. (1981) Recovery o. Bacillus thuringiensis and other bacteria from larvae of Spodoptera littoralis Boisd. previously fed on B. thuringiensis-treated leaves. J. Invertebr. Pathol. 37, 295303.Google Scholar
Starks, K. J., Muniappan, R. and Eikenbary, R. D. (1972) Interaction between plant resistance and parasitism against greenbug on barley and sorghum. Ann. Entomol. Soc. Am. 65, 650655.Google Scholar
Tabashnik, B. (1994) Evolution of resistance t. Bacillus thuringiensis. Annu. Rev. Entomol. 39, 4779.Google Scholar
Tailor, R., Tippett, J., Gibb, G., Pells, S., Pike, D., Jordan, L. and Ely, S. (1992) Identification and characterization of a nove. Bacillus thuringiensis-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol. Microbiol. 6, 12111217.Google Scholar
USDA (1995) Genetically engineered organisms and products: Simplification of requirements and procedures for genetically engineered organisms. 7 CFR 340. Federal Register 60, 4356743573.Google Scholar
van Rie, J., Jansens, S., Höfte, H., Degheele, D. and van Mellaert, H. (1989) Specificity o. Bacillus thuringiensis #1-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur. J. Biochem. 186, 239247.Google Scholar
van Rie, J., McGaughey, W. H., Johnson, D. E., Barnett, B. D. and van Mellaert, H. (1990) Mechanism of insect resistance to the microbial insecticid. Bacillus thuringiensis. Science 247, 7274.Google Scholar
Wu, D. and Aronson, A. I. (1990) Use of mutagenic oligonucleotides for defining regions of a Bacillus thuringiensis #1-endotoxin involved in toxicity, pp. 273277. In Proc. 5th Int. Colloquim on Invertebrate Pathology and Microbial Control, Adelaide, Australia, 20–24 August 1990. Soc. Invertebrate Pathology, Adelaide, Australia.Google Scholar