Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T17:58:24.791Z Has data issue: false hasContentIssue false

Conessine as a larval growth inhibitor, sterilant, and antifeedant from Holarrhena antidysenterica Wall

Published online by Cambridge University Press:  19 September 2011

R. K. Thappa
Affiliation:
Division of Insect Physiology, Regional Research Laboratory, Jammu Tawi 180 001, India
K. Tikku
Affiliation:
Division of Insect Physiology, Regional Research Laboratory, Jammu Tawi 180 001, India
Bhaskar P. Saxena*
Affiliation:
Division of Insect Physiology, Regional Research Laboratory, Jammu Tawi 180 001, India
R. M. Vaid
Affiliation:
Division of Organic Chemistry, Regional Research Laboratory, Jammu Tawi 180 001, India
K. K. Bhutani
Affiliation:
Division of Organic Chemistry, Regional Research Laboratory, Jammu Tawi 180 001, India
*
* To whom correspondence should be addressed.
Get access

Abstract

Conessine, the steroidal alkaloid of Holarrhena antidysenterica Wall, possesses a wide range of activities against four insect species viz. Aedes aegypti, Dysdercus koenigii, Spodoptera litura and Pieris brassicae. In D. koenigii the compound inhibits the egg hatching of treated adults and nymphs. In Ae. aegypti the larval developmental periods are extended, resulting in a high mortality rate. Such effects are produced at very low dosages of 0.5 to lOppm. Antifeedant activity is observed against larvae of S. litura and P. brassicae at concentrations of 0.005 to 0.2 % of conessine.

Résumé

La conessine, un alkaloide steroidique du Holarrhena antidysenterica Wall, possède des activités importantes contre quatre espèces d'insectes Aedes aegypti, Dysdercus koenigii, Spodoptera litura et Pieris brassicae. Dans D. koenigii la substance bloque le developpment des oeufs des adultes et chrysalides, ceci peut entrainer une mortalité très elevée. Des effets de ce genres sont produits par des doses minimes de 0,5 a 10 ppm. Une activite repulsive a èté observée a une concentration de 0,005 a 0,2% de conessine contre les larves du S. litura et P. brassicae.

Type
Research Article
Copyright
Copyright © ICIPE 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alford, A.R. and Bentley, M.D. (1986) Citrus limonoids as potential antifeedants for the spruce budworm (Lepidoptera: Tortricidae). J. econ. Entomol. 79, 3538.CrossRefGoogle Scholar
Bentley, M.D., Leonard, D.E. and Bushway, R.J. (1984a) Solanum alkaloids as larval feeding deterrents for spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Ann. Entomol. Soc. Am. 77, 401403.Google Scholar
Bentley, M.D., Leonard, D.E., Stoddard, W.F. and Zalkow, L. (1984b) Pyrrolizidine alkaloids as feeding deterrents for spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Ann. Entomol. Soc. Am. 77, 393397.Google Scholar
Bertho, A. (1944) Pharmacological tests on extracts and alkaloids of Holarrhena antidysenterica. Arch. Exp. Pathol. Pharmakol. 203, 4146.CrossRefGoogle Scholar
Bhutani, K.K., Raj, S., Gupta, D.K., Kumar, S., Atal, C.K. and Kaul, M.K. (1984) Profile of Kurchi in India. Indian Drugs 21, 212216.Google Scholar
Bhutani, K.K., Ali, M., Sharma, S.R., Vaid, R.M. and Gupta, D.K. (1988) Three new steroidal alkaloids from the bark of Holarrhena antidysenterica. Phytochemistry. 27, 925928.CrossRefGoogle Scholar
Bhutani, K.K. and Vaid, R.M. (1987) Nitration studies with 3 beta-Dimethylaminocon-5-enine (Conessine). J. Chem. Research (S), 282–283. J. Chem. Research (M) 2332–2351.Google Scholar
Blaney, W.M., Simmonds, M.S.J., Evans, S.V. and Fellows, L.E. (1984) The role of the secondary plant compound 2,5-dihydroxymethyl 3,4-dihydroxypyrrolidine as a feeding inhibitor for insects. Entomol. exp. appl. 36, 209216.Google Scholar
Bowers, W.S., Ohta, T., Cleere, J.S. and Marsella, P.A. (1976) Discovery of insectanti-juvenile hormone in plants. Science 193, 542547.Google Scholar
Campbell, F.L. and Sullivan, W.W. (1933) The relative toxicity of nicotine, anabasine, methyl anabasine, and lupinine for culicine mosquito larvae. J. econ. Ent. 26, 500509.CrossRefGoogle Scholar
Casida, J.E. (1976) Prospects for new types of insecticides. In The Future for Insecticides, Needs and Prospects (Edited by Metcalf, R.L. and Mckelvery, J.J. Jr) pp. 349366, John Wiley & Sons, New York.Google Scholar
Gombos, M.A. and Gasko, K. (1977) Extraction of natural antifeedants from the fruits of Amorpha fruticosa L. Acta Phytopathol. Acad. Sci. Hungaricae 12, 349357.Google Scholar
Kubo, I. and Kloeke, J.A. (1982) An insect growth inhibitor from Trichilia roka (Meliaceae). Experientia 38, 639640.Google Scholar
Maradufu, A., Lubega, R. and Dorn, F. (1978) Isolation of (5E)-Ocimenone, a mosquito larvicide from Tagetes minuta. Lloydia 41, 181183.Google Scholar
Marzke, F.O., Coffelt, J.A. and Silhacek, D.L. (1977) Impairment of reproduction of the cigarette beetle, Lasioderma serricorne (Coleoptera: Anobiidae) with the insect growth regulator, methoprene. Ent. exp.& appl. 22, 294300.Google Scholar
Nakajima, S. and Kawazu, K. (1980) Insect development inhibitors from Coleopsis lanceolata L. Agric. Biol. Chem. 44, 15291533.Google Scholar
Ohigashi, H. and Koshimizu, K. (1976) Chavicol, as a larval growth inhibitor, from Viburnum japonicum Spreng. Agric. Biol. Chem. 40, 22832287.Google Scholar
Riddiford, L.M. (1970) Effects of juvenile hormone on the programming of postembryonic development in eggs of the silkworm, Hyalophora cecropia. Devel. Biol. 22, 249263.Google Scholar
Ross, W.J. (1979) Antiamoebic agents. In Burger's Medicinal Chemistry Part II (Edited by Wolff, M.E.), pp. 415438, John Wiley and Sons.Google Scholar
Sakata, K., Aoki, K., Chang, C.F., Sakurai, A., Tamura, S. and Murakoshi, S. (1978) Stemospironine, a new insecticidal alkaloid of Stemona japonica Miq. Isolation, structural determination and activity. Agric. Biol. Chem. 42, 457463.Google Scholar
Saxena, B.P., Koul, O., Tikku, K., Atal, C.K., Suri, O.P. and Suri, A.K. (1979) Aristolochic acid—an insect chemosterilant from Aristolochia bracteata Retz. Indian J. exp. Biol. 17, 354360.Google Scholar
Supavarn, P., Knapp, F.W. and Sigafus, R. (1974) Biologically active plant extracts for control of mosquito larvae. Mosquito News 34, 398402.Google Scholar
Waiss, A.C. Jr, Chan, B.G., Elliger, C.A., Wiseman, B.R., McMillan, W.W., Widstrom, N.W., Zuber, M.S. and Keaster, A.J. (1979) Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. J. econ. Entomol. 72, 256258.CrossRefGoogle Scholar
Zebitz, C.P.W. (1984) Effect of some crude and azadirachtin enriched neem (Azadirachta indica) seed kernel extracts on larvae of Aedes aegypti. Entomol. exp. appl. 35, 1116.Google Scholar