Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T21:42:28.368Z Has data issue: false hasContentIssue false

Assessment of antibiotic potentials of insect antibacterial factors

Published online by Cambridge University Press:  19 September 2011

Godwin P. Kaaya
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

Immune haemolymphs from the giant silkmoth, Hyalophora cecropia and, to a lesser extent, from the tsetse, Glossina morsitans morsitans possess antibacterial activities against several species of bacteria known to be pathogenic to man, animals and poultry, as demonstrated by in vitro bacterial growth inhibition assays. Cecropia immune haemolymph possesses a broader antibacterial spectrum and was found to be active against several Gram-positive and Gram-negative pathogenic bacteria. Mice injected with pre-determined lethal doses of Enterobacter cloacae, Klebsiella pneumoniae and Corynebacterium pseudotuberculosis and then treated with single intraperitoneal or subcutaneous injections of Cecropia immune haemolymph had much lower mortality than untreated controls. A possibility of developing a broad-spectrum antibiotic modelled on insect immune factors is discussed.

Résumé

Des haemolymphes immunisés obtenus à partir des grands papillons nocturnes à soie, Hyalophora cecropia et, à un niveau plus restreint, à partir de la mouche tsetse, Glossina morsitans morsitans, possèdent, comme le démontrent les essais in vitro d'inhibition de croissance bacterienne, des activités antibacteriennes contre plusieurs espèces de bacteries connues comme étant pathogènes à l'homme, animaux et volaille. L'haemolymphe immunisé de Cecropia a un spectre antibacterien très large et est trouvè actif contre plusieurs bacteries pathogènes Gram-positif et Gram-négatif. Des souris injectées avec une dose lethale prédeterminée d'Enterobacter cloacae, Klebsiella pneumoniae et de Corynebacterium pseudotuberculosis et ensuite traitées avec une seule injection intraperitoneale ou sous cutanée d'haemolymphe immunisé de Cecropia avaient des taux de mortalité bien plus faibles que ceux des controles non traités. Une possibilité, de developpement d'un large spectre d'antibiotique calqué sur les facteurs immunisants d'insect, est discutée.

Type
Research Articles
Copyright
Copyright © ICIPE 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boman, H.G. and Hultmark, D. (1987) Cell-free immunity in insects. Annu. Rev. Microbiol. 41, 103126.CrossRefGoogle ScholarPubMed
Dunn, P.E. (1986) Biochemical aspects of insect immunology. Annu. Rev. Entormol. 31, 321339.CrossRefGoogle Scholar
Dimarcq, J.L., Keppi, E., Lambert, J., Zachary, D. and Hoffmann, D. (1986) Diptericin A, a novel antibacterial peptide induced by immunization or injury in larvae of the dipteran insect Phormia terranovae. Dev. Comp. Immunol. 10, 626.Google Scholar
Faye, I., Pye, A., Rasmuson, T., Boman, H.G. and Boman, I.A. (1975) Insect Immunity: II -Simultaneous induction of antibacterial activity and selective synthesis of some haemolymph proteins in diapausing pupae of Hyalophora cecropia and Samia cynthia. Infect. Immuno 12, 14261438.CrossRefGoogle Scholar
Gingrich, R.E. (1964) Acquired humoral immune response of the large milkweed bug, Oncopeltus fasciatus (Dallas), to injected materials. J. Insect Physiol. 10, 179194.CrossRefGoogle Scholar
Hoffmann, D., Hultmark, D. and Boman, H.G. (1981) Insect immunity: Galleria mellonella and other lepidoptera have Cecropia-P9-like factors active against Gram-negative bacteria. Insect Biochem. 11, 537548.CrossRefGoogle Scholar
Hultmark, D., Steiner, H., Rasmuson, T. and Boman, H.G. (1980) Insect immunity: Purification and properties of three inducible bactericidal proteins from haemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106, 716.CrossRefGoogle ScholarPubMed
Jones, M.L. (1968) Veterinary Pharmocology and Therapeutics, 3rd edition, pp. 9, 503 and 539–550. Iowa State University Press, Ames, Iowa, U.S.A.Google Scholar
Kaaya, G.P. and Darji, N. (1986) Humoral immunity in tsetse: Differences in response due to sex and age of tsetse, species and doses of immunizing agents, and the in vitro effects of temperature and bacterial factors. Dev. Comp. Immunol. 10, 627628.Google Scholar
Kaaya, G.P. and Darji, N. (1988) The humoral defense system in tsetse: Differences in response due to age, sex and antigen types. Dev. Comp. Immunol. 12, 255268.CrossRefGoogle ScholarPubMed
Kaaya, G.P., Flyg, C. and Boman, H.G. (1987) Insect Immunity:Induction of cecropin and attacin-like antibacterial factors in the haemolymph of Glossina morsitans morsitans. Insect Biochem. 17, 309315.CrossRefGoogle Scholar
Kaaya, G.P. and Ratcliffe, N.A. (1982) Comparative study of hemocytes and associated cells of some medically important dipterans. J. Morphol. 173, 351365.CrossRefGoogle ScholarPubMed
Kaaya, G.P., Ratcliffe, N.A. and Alemu, P. (1986) Cellular and humoral defenses of Glossina (Diptera: Glossinidae): Reactions against bacteria, trypanosomes, and experimental implants. J. Med Entomol. 23, 3043.CrossRefGoogle ScholarPubMed
Keppi, E., Zachary, D., Robertson, M., Hoffmann, D. and Hoffmann, J.A. (1986) Induced antibacterial proteins in the haemolymph of Phormia terranovae (Diptera): Purification and possible origin of one protein. Insect Biochem. 16, 395409CrossRefGoogle Scholar
Merchant, I.A. and Packer, R.A. (1967) Veterinary Bacteriology and Virology, 7th edition, pp. 101113. Iowa State University Press, Ames, Iowa, U.S.A.Google Scholar
Okada, M. and Natori, S. (1983) Purification and characterization of an antibacterial protein from haemolymph of Sarcophaga peregrina (flesh-fly) larvae. J. Biochem. 211, 727734.CrossRefGoogle ScholarPubMed
Stephens, J.S. and Marshall, J.H. (1962) Some properties of an immune factor isolated from the blood of actively immunized wax moth larvae. Can. J. Microbiol. 8, 719725.CrossRefGoogle Scholar
Tizard, I.R. (1977) An Introduction to Veterinary Immunology, pp. 2431. W.B. Saunders Co., Philadelphia, London, Toronto.Google Scholar
Ziran, H. (1986) The inhibition effects of antibacterial peptide D from the Chinese oak silkworm (Antheraea pernyi) pupae. Dev. Comp. Immunol. 10, 628629.Google Scholar
Williams, C.B. (1960) The range and pattern of insect abundance. Am. Nat. 94, 137151.CrossRefGoogle Scholar