Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-16T02:40:43.190Z Has data issue: false hasContentIssue false

Aspects of the biology of Orthezia insignis Browne (Ortheziidae: Homoptera) infesting Hamelia sphaerocarpa Ruiz & Pav. (Rubiaceae) in Uganda—II. Infestation and feeding behaviour

Published online by Cambridge University Press:  19 September 2011

J. S. O. Epila
Affiliation:
Department of Forestry, Faculty of Agriculture & Forestry, Makerere University, P.O. Box 7062, Kampala, Uganda
Get access

Abstract

Simultaneously or selectively, nymphs and adults of Orthezia insignis used physiological age of the host-units, the relative sizes of sap pathways and the concentration of photosynthates to choose feeding and/or oviposition sites, depending on the state of the host plant. On the non-flowering plants, physiological age and relative sizes of pathways were the principal determinants, while on flowering food plants all the three criteria were used although the sink-photosynthate-concentration factor had a decidedly dominant influence on Orthezia than otherwise.

Résumé

Simultanément ou sélectivement des nymphes et des adultes de Orthezia insignis se sont servis de l'âge physiologique de l'unité-hôte, les tailles ralatives des accotement de la sève et la concentration de photosynthates pour choisir les milieux d'oviposition, dépendant d l'état de l'arbre-hôte. Sur les plantes non-fleurissantes, l'âge physiologique et les tailles relatives des accotement étaient les principaux déterminantes, tandis que sur les plantes fleurissantes tous les trois critères fussent utilisées bien que le facteur de concentration de sink-photosynthates a eu une influence dominante sur l'Orthezia plus qu'auteement.

Type
Research Articles
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caswell, G. H. (1962) Agricultural Entomology in the Tropics. Arnold, London.Google Scholar
Christy, A. L. and Swanson, C. A. (1976) Control of translocation by photosynthesis and carbohydrate concentrations of the source leaf. In Transport and Transfer Processes in Plants (Edited by Wardlaw, I. F. and Pas-sioura, J. B.), pp. 329338. Academic Press, New York.CrossRefGoogle Scholar
Cook, M. G. and Evans, L. T. (1976) Effects of sink size, geometry and distance from source on the distribution of assimilates in wheat. In Transport and Transfer Processes in Plants (Edited by Wardlaw, I. F. and Passioura, J. B.), pp. 393400. Academic Press, New York.CrossRefGoogle Scholar
Epila, J. S. O. (1986) Aspects of the biology of Orthezia insignis Browne (Ortheziidae: Homoptera) infesting Hamelia sphaerocarpa Ruiz & Pav. (Rubiaceae) in Uganda—I. Life History. Insect Sci. Applic. 7, 5359.Google Scholar
Evans, A. C. (1941) Physiological relationships between insects and their host plants. II. A preliminary study of the effects of aphids on the chemical composition of cabbage and field beans. Ann. appl. Biol. 28, 368371.CrossRefGoogle Scholar
Fennah, R. G. (1963) Nutritional factors associated with seasonal population increase of cacao thrips, Selenothrips rubrocinctus (Giard) (Thysanoptera), on cashew, Anacardium occidentale. Bull. ent. Res. 53, 681716.CrossRefGoogle Scholar
Geiger, D. R. (1976) Phloem loading in source leaves. In Transport and Transfer Processes in Plants (Edited by Wardlaw, I. F. and Passioura, J. B.), pp. 167183. Academic Press, New York.Google Scholar
Geiger, D. R., Giaquinta, R. T., Sovonick, S. A. and Fellows, R. J. (1973) Solute distribution in sugar beet leaves in relation to phloem loading and translocation. PI. Physiol. 52, 585589.Google Scholar
Ibbotson, A. and Kennedy, J. S. (1950) The distribution of aphid infestation in relation to leaf age. II. The progress of Aphis fabae Scop, infestations on sugar beet in pots. Ann. appl. Biol. 37, 680696.CrossRefGoogle Scholar
Kennedy, J. S., Ibbotson, A. and Booth, C. O. (1950) The distribution of aphid infestation in relation to leafage. I. Myzus persicae (Sulz.) and Aphis fabae Scop, on spindle trees and sugar beet plants. Ann. appl. Biol. 37, 651679.Google Scholar
Kriedemann, P. E., Loveys, B. R., Possingham, J. and Satoh, M. (1976) Sink effects on stomatal physiology and photosynthesis. In Transport and Transfer Processes in Plants (Edited by Wardlaw, I. F. and Passioura, J. B.), pp. 401414. Academic Press, New York.CrossRefGoogle Scholar
Ledig, F. T. (1983) The influence of genotype and environment on dry matter distribution in plants. In Plant Research and Agroforestry (Edited by Huxley, C. P.), pp. 427–54. ICRAF, Nairobi, Kenya.Google Scholar
Leonard, E. R. (1962) Interrelations of vegetative and reproductive growth, with special reference to indeterminate plants. Bol. Rev. 28, 353–41O.Google Scholar
Lunderstadt, J. (1976a) Extraction and analysis of free and protein-bound amino acids from Norway Spruce foliage. In Modern Methods in Forest Genetics (Edited Miksche, J. P.), pp. 7888. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Lunderstadt, J. (1976b) Isolation and analysis of plant phenolics from foliage in relation to species characterization and to resistance against insects and pathogens. In Modem Methods in Forest Genetics (Edited by Miksche, J. P.), pp. 158164. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Montieth, L. G. (1967) Responses by Diprion hercyniae (Hymenoptera: Diprionidae) to its food plant and their influence on its relationship with its parasite Drino bohemica (Diptera: Tachinidae). Can. Ent. 99, 682685.CrossRefGoogle Scholar
Nelson, N. D. and Michael, D. (1982) Photosynthesis, leaf conductance, and specific leaf weight in long and short shoots of Populus ‘Tristis # 1' grown under intensive culture. For. Sei. 28, 737744.Google Scholar
Owera, S. A. P. (1981) Physiology of barley infected with biotrophic fungi. Unpublished thesis, University of Wales, Bangor.Google Scholar
Pate, J. S. (1976) Nutrients and metabolites of fluids recovered from xylem and phloem: significance in relation to long-distance transport in plants. In Transport and Transfer Processes in Plants (Edited by Wardlaw, I. F. and Passioura, J. B.), pp. 253281. Academic Press, New York.CrossRefGoogle Scholar
Patrick, J. W. (1976) Hormone-directed transport of metabolites. In Transport and Transfer Processes in Plants (Edited by Wardlaw, I. F. and Passioura, J. B.), pp. 433446. Academic Press, New York.Google Scholar
Southwood, T. R. E. (1966) Ecological Methods with Special Reference to the Study of Insect Populations. Chapman & Hall, London.Google Scholar
Tumiuk, J. and Worhmann, K. (1980) Population growth and population structure of natural populations of Macrosiphum rosae (L.) (Hemiptera, Aphididae). Z. angew. Ent. 90, 464473.CrossRefGoogle Scholar
Tumiuk, J. and Worhmann, K. (1982) Effect of temperature and humidity on natural populations of Aphis pomi De Geer and of Macrosiphum rosae (L.) (Hemiptera: Aphididae). Z. PflKrankh. PflSchutz. 89, 157169.Google Scholar