Skip to main content Accessibility help
×
Home

Patient preferences for pharmacogenetic screening in depression

  • Louise Herbild (a1), Dorte Gyrd-Hansen (a1) and Mickael Bech (a2)

Abstract

Objectives: The aims of this study were to estimate preferences and willingness-to-pay (WTP) for genetic screening for CYP2D6 polymorphisms among a group of former and currently depressed patients.

Methods: A Web-based discrete choice questionnaire was sent to 89 respondents, age 18–65. Four attributes were included: (i) shifts in antidepressant medication before symptom relief, (ii) time with antidepressant medication without symptom relief, (iii) time with antidepressant medication without symptoms but with adverse side-effects, (iv) cost of genetic screening. We used a switching model with two scenarios, one representing patients’ own treatment history and the other a treatment scenario with genetic screening.

Results: In a main-effects model involving the four attributes all coefficients had the expected sign, indicating that as the number of shifts, price or time without symptom relief, and/or dosage-adjustments increased, the likelihood of choosing the screening test decreased. Price and number of shifts in medicine were significant. Marginal WTP for 5 percent probability of a reduction of one in antidepressant shifts was DKK2,599 (€350).

Conclusions: Patients value reductions in shifts in antidepressants and price when choosing between genetic screening and no screening. They do not focus on how the reductions are provided, nor do they value the genetic information the test provides irrespective of its effect on outcome. Given, that the test is able to provide a reduction of one shift in the number of antidepressant shifts with a probability of 5 percent, WTP for the test exceeds its cost.

Copyright

References

Hide All
1. Andersson, T, Flockhart, DA, Goldstein, DB, et al. . Drug-metabolizing enzymes: Evidence for clinical utility of pharmacogenomic tests. Clin Pharmacol Ther. 2005;78:559581.
2. Berto, P, D'Ilario, D, Ruffo, P, et al. Depression: Cost-of-illness studies in the international literature, a review. J Ment Health Policy Econ. 2000;3:310.
3. Biosam. Farmakogenetik i Danmark. Biosam. 2003;15.
4. Bridges, JF. Stated preference methods in health care evaluation: An emerging methodological paradigm in health economics. Appl Health Econ Health Policy. 2003;2:213224.
5. Briggs, AH, Wonderling, DE, Mooney, CZ. Pulling cost-effectiveness analysis up by its bootstraps: A non-parametric approach to confidence interval estimation. Health Econ. 1997;6:327340.
6. Brook, O, van Hout, H, Nieuwenhuyse, H, Heerdink, E. Impact of coaching by community pharmacists on drug attitude of depressive primary care patients and acceptability to patients; a randomized controlled trial. Eur Neuropsychopharmacol. 2003;13:19.
7. Brøsen, K. Some aspects of genetic polymorphism in the biotransformation of antidepressants. Therapie. 2004;59:512.
8. Brøsen, K. Klassisk Farmakogenetik. Ugeskr Læger. 2005;167:21432146.
9. Caraco, Y. Genes and the response to drugs. N Engl J Med. 2004;351:28672869.
10. Chou, WH, Yan, FX, de Leon, J, et al. . Extension of a pilot study: Impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol. 2000;20:246251.
11. Cuijpers, P, Smit, F, Oostenbrink, J, et al. . Economic costs of minor depression: A population-based study. Acta Psychiatr Scand 2007;115:229236.
12. Danmarks Statistik. Befolkningens brug af internet 2007. 42nd ed. Danmarks Statistik; 2007.
13. Efron, B, Tibshirani, RJ. Introduction to the bootstrap. 1st ed. London: Chapman & Hall/CRC; 1993.
14. Greenberg, PE, Stiglin, LE, Finkelstein, SN, Berndt, ER. Depression: A neglected major illness. J Clin Psychiatry. 1993;54:419424.
15. Heller, T, Kirchheiner, J, Armstrong, VW, et al. . AmpliChip CYP450 GeneChip: A new gene chip that allows rapid and accurate CYP2D6 genotyping. Ther Drug Monit. 2006;28:673677.
16. Hensher, D, Rose, JM, Greene, WH. Applied choice analysis—A primer. 1st ed. Cambridge: Cambridge University Press; 2005.
17. Herbild, L. Working paper: Designing a DCE to outlay patients’ and the publics’ preferences for genetic screening in the treatment of depression. 2007:1 ed. University of Southern Denmark, Institute of Public Health—Health Economics; 2007.
18. Hole, AR. A comparison of approaches to estimating confidence intervals for willingness to pay measures. Health Econ. 2007;16:827840.
19. Ingelman-Sundberg, M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): Clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5:613.
20. Ingelman-Sundberg, M. The human genome project and novel aspects of cytochrome P450 research. Toxicol Appl Pharmacol. 2005;207 (Suppl):5256.
21. Ingelman-Sundberg, M. Email correspondence: Preferences for genetic screening for CYP-polymorphisms. 2007.
22. Ingelman-Sundberg, M, Rodriguez-Antona, C. Pharmacogenetics of drug-metabolizing enzymes: Implications for a safer and more effective drug therapy. Philos Trans R Soc Lond B Biol Sci. 2005;360:15631570.
23. Kirchheiner, J, Bertilsson, L, Bruus, H, et al. Individualized medicine—implementation of pharmacogenetic diagnostics in antidepressant drug treatment of major depressive disorders. Pharmacopsychiatry. 2003;36 (Suppl 3):S235S243.
24. Kirchheiner, J, Brøsen, K, Dahl, ML, et al. . CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: A first step towards subpopulation-specific dosages. Acta Psychiatrica Scand. 2001;104:173192.
25. Kirchheiner, J, Nickchen, K, Bauer, M, et al. . Pharmacogenetics of antidepressants and antipsychotics: The contribution of allelic variations to the phenotype of drug response. Mol Psychiatry. 2004;9:442473.
26. Kolonien Filadelfia. Laboratoriet i Dianalund. Kolonien Filadelfia Laboratoriet 2007 August 9. Available at: URL: http://www.laboratoriet.epilepsihospitalet.dk/.
27. Kuhfeld, WF. Marketing research methods in SAS experimental design, choice, Conjoint and graphical techniques. TS-722 ed. SAS Institute; 2005.
28. Luppa, M, Heinrich, S, Angermeyer, MC, et al. . Cost-of-illness studies of depression A systematic review. J Affect Disord. 2007;98:2943.
29. Lynch, T, Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76:391396.
30. Matchar, DB, Thakur, ME, Grossman, I, et al. . Testing for cytochrome P450 polymorphisms in adults with non-psychotic depression treated with selective serotonin reuptake inhibitors (SSRIs). 146 ed. Durham, NC: Agency for Healthcare Research and Quality, U.S. Department of Health and Human Services: Duke Evidence-based Practice Center; 2006.
31. McCombs, JS, Nichol, MB, Stimmel, GL, et al. . The cost of antidepressant drug therapy failure: A study of antidepressant use patterns in a Medicaid population. J Clin Psychiatry. 1990;51 (Suppl):6069.
32. Mors, NPO, Børglum, AD. Status og perspektiver inden for psykiatrisk genomisk medicin. Ugeskr Læger. 2005;167:21912193.
33. Mortensen, PB. Depressioners epidemiologi [The epidemiology of depression]. In: DSI Institut for Sundhedsvæsen, editor. Depression—en folkesygdom der skal behandles? København: DSI Institut for Sundhedsvæsen; 1999:5966.
34. Mulder, H, Herder, A, Wilmink, FW, et al. . The impact of cytochrome P450-2D6 genotype on the use and interpretation of therapeutic drug monitoring in long-stay patients treated with antidepressant and antipsychotic drugs in daily psychiatric practice. Pharmacoepidemiol Drug Saf. 2006;15:107114.
35. Rasmussen, JO, Christensen, M, Svendsen, JM, et al. . CYP2D6 gene test in psychiatric patients and healthy volunteers. Scand J Clin Lab Invest. 2006;66:129136.
36. Rau, T, Wohlleben, G, Wuttke, H, et al. . CYP2D6 genotype: Impact on adverse effects and nonresponse during treatment with antidepressants–-a pilot study. Clin Pharmacol Ther. 2004;75:386393.
37. Russell, JM, Hawkins, K, Ozminkowski, RJ, et al. . The cost consequences of treatment-resistant depression. J Clin Psychiatry. 2004;65:341347.
38. Smith, RD, Olsen, JA, Harris, A. A review of methodological issues in the conduct of willingness-to-pay studies in health care I: Construction and specification of the contingent market. working paper 84 ed. Australia: Centre for Health Program Evaluation, Monash University; 1999.
39. Sobocki, P, Ekman, M, Agren, H, et al. The mission is remission: Health economic consequences of achieving full remission with antidepressant treatment for depression. Int J Clin Pract. 2006;60:791798.
40. Sobocki, P, Lekander, I, Borgstrom, F, et al. . The economic burden of depression in Sweden from 1997 to 2005. Eur Psychiatry. 2007;22:146152.
41. Suh, DC. Consumers’ willingness to pay for pharmacy services that reduce risk of medication-related problems. J Am Pharm Assoc (Wash). 2000;40:818827.
42. Unützer, J, Katon, WJ, Russo, J, et al. Willingness to pay for depression treatment in primary care. Psychiatr Serv. 2003;54:340345.
43. Wedlund, PJ, de Leon, J. Cytochrome P450 2D6 and antidepressant toxicity and response: What is the evidence? Clin Pharmacol Ther. 2004;75:373375.
44. Wittchen, H, Jacobi, F. Size and burden of mental disorders in Europe - a critical review and appraisal of 27 studies. Eur Neuropsychopharmacol. 2005;15:357376.

Keywords

Patient preferences for pharmacogenetic screening in depression

  • Louise Herbild (a1), Dorte Gyrd-Hansen (a1) and Mickael Bech (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed