Skip to main content Accessibility help
×
Home

Cost-effectiveness of interventions based on physical exercise in the treatment of various diseases: A systematic literature review

  • Eija Roine (a1), Risto P. Roine (a2), Pirjo Räsänen (a3), Ilkka Vuori (a3), Harri Sintonen (a3) and Tiina Saarto (a1)...

Abstract

Objectives: The aim of this study was to review studies reporting cost-effectiveness of exercise-based interventions in treatment of various diseases.

Methods: Systematic literature search using several databases. Abstracts initially screened independently by two authors, full-text articles again evaluated by two authors, who decided whether an article should be included. Included were scientifically valid articles describing controlled studies that included an exercise-based intervention in the treatment of an established medical condition, and also reported on the cost-effectiveness of the intervention, or its effect on the utilization of health services. Quality was assessed with an established approach.

Results: A total of 914 articles were identified, of them 151 were obtained for closer review. Sixty-five articles describing sixty-one studies were included. Most (82 percent) were randomized trials. Twenty-eight studies dealt with musculoskeletal disorders, fifteen with cardiology, four with rheumatic diseases, four with pulmonary diseases, three with urinary incontinence, and two with vascular disorders. There was one study each in the fields of oncology, chronic fatigue, endocrinology, psychiatry, and neurology. Exercise interventions in musculoskeletal disorders were deemed to be cost-effective in 54 percent, in cardiology in 60 percent, and in rheumatic diseases in 75 percent of the cases. There was some evidence that exercise might be cost-effective in intermittent claudication, breast cancer patients, diabetes, and schizophrenia.

Conclusions: The number of studies assessing cost-effectiveness of exercise interventions in various diseases is still limited. The results show large variation but suggest that some exercise interventions can be cost-effective. Most convincing evidence was found for rehabilitation of cardiac and back pain patients; however, even in these cases, the evidence was partly contradictory.

Copyright

References

Hide All
1. Arthur, HM, Daniels, C, McKelvie, R, et al. Effect of a preoperative intervention on preoperative and postoperative outcomes in low-risk patients awaiting elective coronary artery bypass graft surgery. A randomized, controlled trial. Ann Intern Med. 2000;133:253262.
2. Bakker, C, Hidding, A, Van Der Linden, S, et al. Cost effectiveness of group physical therapy compared to individualized therapy for ankylosing spondylitis. A randomized controlled trial. J Rheumatol. 1994;21:264268.
3. Beaupre, LA, Lier, D, Davies, DM, et al. The effect of a preoperative exercise and education program on functional recovery, health related quality of life, and health service utilization following primary total knee arthroplasty. J Rheumatol. 2004;31:11661173.
4. Blumenthal, JA, Babyak, M, Wei, J, et al. Usefulness of psychosocial treatment of mental stress-induced myocardial ischemia in men. Am J Cardiol. 2002;89:164168.
5. Bonaiuti, D, Shea, B, Iovine, R, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2002;3:CD000333.
6. Briffa, TG, Eckermann, SD, Griffiths, AD, et al. Cost-effectiveness of rehabilitation after an acute coronary event: A randomised controlled trial. Med J Aust. 2005;183:450455.
7. Brox, JI, Staff, PH, Ljunggren, AE, et al. Arthroscopic surgery compared with supervised exercises in patients with rotator cuff disease (stage II impingement syndrome). BMJ. 1993;307:899903.
8. Bulthuis, Y, Mohammad, S, Braakman-Jansen, LM, et al. Cost-effectiveness of intensive exercise therapy directly following hospital discharge in patients with arthritis: Results of a randomized controlled clinical trial. Arthritis Rheum. 2008;59:247254.
9. Carlson, JJ, Johnson, JA, Franklin, BA, et al. Program participation, exercise adherence, cardiovascular outcomes, and program cost of traditional versus modified cardiac rehabilitation. Am J Cardiol. 2000;86:1723.
10. Carr, JL, Klaber Moffett, JA, Howarth, E, et al. A randomized trial comparing a group exercise programme for back pain patients with individual physiotherapy in a severely deprived area. Disabil Rehabil. 2005;27:929937.
11. Carrieri-Kohlman, V, Nguyen, HQ, Donesky-Cuenco, D, et al. Impact of brief or extended exercise training on the benefit of a dyspnea self-management program in COPD. J Cardiopulm Rehabil. 2005;25:275284.
12. Clini, E, Foglio, K, Bianchi, L, et al. In-hospital short-term training program for patients with chronic airway obstruction. Chest. 2001;120:15001505.
13. Cochrane, T, Davey, RC, Matthes Edwards, SM. Randomised controlled trial of the cost-effectiveness of water-based therapy for lower limb osteoarthritis. Health Technol Assess. 2005;9: iii-iv, ix-xi, 1114.
14. Cost Effectiveness Analysis Registry. https://research.tufts-nemc.org/cear/default.aspx.
15. Coupe, VM, Veenhof, C, van Tulder, MW, et al. The cost effectiveness of behavioural graded activity in patients with osteoarthritis of hip and/or knee. Ann Rheum Dis. 2007;66:215221.
16. de Morton, NA, Keating, JL, Jeffs, K. Exercise for acutely hospitalised older medical patients. Cochrane Database Syst Rev. 2007;1:CD005955.
17. Drummond, MF, Sculpher, MJ, Torrance, GW, et al. Methods for the economic evaluation of health care programmes. 3rd ed. Toronto: Oxford University Press; 2005.
18. Georgiou, D, Chen, Y, Appadoo, S, et al. Cost-effectiveness analysis of long-term moderate exercise training in chronic heart failure. Am J Cardiol. 2001;87:984988.
19. Geraets, JJ, Goossens, ME, de Bruijn, CP, et al. Cost-effectiveness of a graded exercise therapy program for patients with chronic shoulder complaints. Int J Technol Assess Health Care. 2006;22:7683.
20. Gordon, LG, Scuffham, P, Battistutta, D, et al. A cost-effectiveness analysis of two rehabilitation support services for women with breast cancer. Breast Cancer Res Treat. 2005;94:123133.
21. Hagberg, LA, Lindholm, L. Cost-effectiveness of healthcare-based interventions aimed at improving physical activity. Scand J Publ Health. 2006;34:641653.
22. Hagerman, I, Tyni-Lenne, R, Gordon, A. Outcome of exercise training on the long-term burden of hospitalisation in patients with chronic heart failure. A retrospective study. Int J Cardiol. 2005;98:487491.
23. Hall, JP, Wiseman, VL, King, MT, et al. Economic evaluation of a randomised trial of early return to normal activities versus cardiac rehabilitation after acute myocardial infarction. Heart Lung Circ. 2002;11:1018.
24. Hambrecht, R, Walther, C, Möbius-Winkler, S, et al. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: A randomized trial. Circulation. 2004;109:13711378.
25. Harada, A, Kawakubo, K, Lee, JS, et al. Cost and effectiveness of exercise therapy for patients with essential hypertension [in Japanese]. Nippon Koshu Eisei Zasshi. 2001;48:753763.
26. Hayden, JA, van Tulder, MW, Malmivaara, A, et al. Exercise therapy for treatment of non-specific low back pain. Cochrane Database Syst Rev. 2005;3:CD000335.
27. Heymans, MW, de Vet, HC, Bongers, PM, et al. The effectiveness of high-intensity and low-intensity back schools in an occupational setting. Spine. 2006;31:10751082.
28. Hopman-Rock, M, Westhoff, MH. The effects of a health educational and exercise program for older adults with osteoarthritis for the hip or knee. J Rheumatol. 2000;27:19471954.
29. Hurley, MV, Walsh, NE, Mitchell, HL, et al. Economic evaluation of a rehabilitation program integrating exercise, self-management, and active coping strategies for chronic knee pain. Arthritis Rheum. 2007;57:12201229.
30. Johnson, RE, Jones, GT, Wiles, NJ, et al. Active exercise, education, and cognitive behavioral therapy for persistent disabling low back pain: A randomized controlled trial. Spine. 2007;32:15781585.
31. Jolliffe, JA, Rees, K, Taylor, RS, et al. Exercise-based rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2001;1:CD001800.
32. Jolly, K, Taylor, R, Lip, GY, et al. The Birmingham Rehabilitation Uptake Maximisation Study (BRUM). Home-based compared with hospital-based cardiac rehabilitation in a multi-ethnic population: Cost-effectiveness and patient adherence. Health Technol Assess. 2007;11:1118.
33. Knols, R, Aaronson, NK, Uebelhart, D, et al. Physical exercise in cancer patients during and after medical treatment: A systematic review of randomized and controlled clinical trials. J Clin Oncol. 2005;23:38303842.
34. Korthals-de Bos, IB, Hoving, JL, van Tulder, MW, et al. Cost effectiveness of physiotherapy, manual therapy, and general practitioner care for neck pain: Economic evaluation alongside a randomised controlled trial. BMJ. 2003;326:911916.
35. Lee, HL, Mehta, T, Ray, B, et al. A Non-randomised controlled trial of the clinical and cost effectiveness of a supervised exercise programme for claudication. Eur J Vasc Endovasc Surg. 2007;33:202207.
36. Lemstra, M, Stewart, B, Olszynski, WP. Effectiveness of multidisciplinary intervention in the treatment of migraine: A randomized clinical trial. Headache. 2002;42:845854.
37. Lewis, JS, Hewitt, JS, Billington, L, et al. A randomized clinical trial comparing two physiotherapy interventions for chronic low back pain. Spine. 2005;30:711721.
38. Malmivaara, A, Hakkinen, U, Aro, T, et al. The treatment of acute low back pain: Bed rest, exercises, or ordinary activity? N Engl J Med. 1995;332:351355.
39. McCarthy, CJ, Mills, PM, Pullen, R, et al. Supplementation of a home-based exercise programme with a class-based programme for people with osteoarthritis of the knees: A randomised controlled trial and health economic analysis. Health Technol Assess. 2004;8:161.
40. McCrone, P, Ridsdale, L, Darbishire, L, et al. Cost-effectiveness of cognitive behavioural therapy, graded exercise and usual care for patients with chronic fatigue in primary care. Psychol Med. 2004;34:991999.
41. McNeely, ML, Campbell, KL, Rowe, BH, et al. Effects of exercise on breast cancer patients and survivors: A systematic review and meta-analysis. CMAJ. 2006;175:3441.
42. Miller, BW, Cress, CL, Johnson, ME, et al. Exercise during hemodialysis decreases the use of antihypertensive medications. Am J Kidney Dis. 2002;39:828833.
43. Mitchell, RI, Carmen, GM. Results of a multicenter trial using an intensive active exercise program for the treatment of acute soft tissue and back injuries. Spine. 1990;15:514521.
44. Moffett, JK, Torgerson, D, Bell-Syer, S, et al. Randomised controlled trial of exercise for low back pain: Clinical outcomes, costs, and preferences. BMJ. 1999;319:279283.
45. Nguyen, HQ, Ackermann, RT, Berke, EM, et al. Impact of a managed-medicare physical activity benefit on health care utilization and costs in older adults with diabetes. Diabetes Care. 2007;30:4348.
46. Niemistö, L, Lahtinen-Suopanki, T, Rissanen, P, et al. A randomized trial of combined manipulation, stabilizing exercises, and physician consultation compared to physician consultation alone for chronic low back pain. Spine. 2003;28:21852191.
47. Niemistö, L, Rissanen, P, Sarna, S, et al. Cost-effectiveness of combined manipulation, stabilizing exercises, and physician consultation compared to physician consultation alone for chronic low back pain: A prospective randomized trial with 2-year follow-up. Spine. 2005;30:11091115.
48. Nieuwland, W, Berkhuysen, MA, van Veldhuisen, DJ, et al. Differential effects of high-frequency versus low-frequency exercise training in rehabilitation of patients with coronary artery disease. J Am Coll Cardiol. 2000;36:202207.
49. Patrick, DL, Ramsey, SD, Spencer, AC, et al. Economic evaluation of aquatic exercise for persons with osteoarthritis. Med Care. 2001;39:413424.
50. Ramsay, IN, Ali, HM, Hunter, M, et al. A prospective, randomized controlled trial of inpatient versus outpatient continence programs in the treatment of urinary incontinence in the female. Int Urogynecol J Pelvic Floor Dysfunct. 1996;7:260263.
51. Rees, K, Taylor, RS, Singh, S, et al. Exercise based rehabilitation for heart failure. Cochrane Database Syst Rev. 2004;3:CD003331.
52. Reid, RD, Dafoe, WA, Morrin, L, et al. Impact of program duration and contact frequency on efficacy and cost of cardiac rehabilitation: Results of a randomized trial. Am Heart J. 2005;149:862868.
53. Richardson, G, Hawkins, N, McCarthy, CJ, et al. Cost-effectiveness of a supplementary class-based exercise program in the treatment of knee osteoarthritis. Int J Technol Assess Health Care. 2006;22:8489.
54. Ries, AL, Kaplan, RM, Limberg, TM, et al. Effects of pulmonary rehabilitation on physiologic and psychosocial outcomes in patients with chronic obstructive pulmonary disease. Ann Intern Med. 1995;122:823832.
55. Roush, MB, Sevier, TL, Wilson, JK, et al. Anterior knee pain: A clinical comparison of rehabilitation methods. Clin J Sport Med. 2000;10:2228.
56. Schmitz, KH, Holtzman, J, Courneya, KS, et al. Controlled physical activity trials in cancer survivors: A systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2005;14:15881595.
57. Schnelle, JF, Kapur, K, Alessi, C, et al. Does an exercise and incontinence intervention save healthcare costs in a nursing home population? J Am Geriatr Soc. 2003;51:161168.
58. Sevick, MA, Bradham, DD, Muender, M, et al. Cost-effectiveness of aerobic and resistance exercise in seniors with knee osteoarthritis. Med Sci Sports Exerc. 2000;32:15341540.
59. Shaw, K, Gennat, H, O'Rourke, P, Del Mar, C. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006;4:CD003817.
60. Soegaard, R, Christensen, FB, Lauersen, I, et al. Lumbar spinal fusion patients’ demands to the primary health sector: Evaluation of three rehabilitation protocols. A prospective randomized study. Eur Spine J. 2006;15:648656.
61. Søgaard, R, Bünger, CE, Laurberg, I, et al. Cost-effectiveness evaluation of an RCT in rehabilitation after lumbar spinal fusion: A low-cost, behavioural approach is cost-effective over individual exercise therapy. Eur Spine J. 2008;17:262271.
62. Thomas, DE, Elliott, EJ, Naughton, GA. Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006;3:CD002968.
63. Thomas, KS, Miller, P, Doherty, M, et al. Cost effectiveness of a two-year home exercise program for the treatment of knee pain. Arthritis Rheum. 2005;53:388394.
64. Timm, KE. A randomized-control study of active and passive treatments for chronic low back pain following L5 laminectomy. J Orthop Sports Phys Ther. 1994;20:276286.
65. Torres-Carbajo, A, Olivares, JM, Merino, H, et al. Efficacy and effectiveness of an exercise program as community support for schizophrenic patients. Am J Recr Ther. 2005;4:4147.
66. Torstensen, TA, Ljunggren, AE, Meen, HD, et al. Efficiency and costs of medical exercise therapy, conventional physiotherapy, and self-exercise in patients with chronic low back pain. A pragmatic, randomized, single-blinded, controlled trial with 1-year follow-up. Spine. 1998;23:26162624.
67. Treesak, C, Kasemsup, V, Treat-Jacobson, D, et al. Cost-effectiveness of exercise training to improve claudication symptoms in patients with peripheral arterial disease. Vasc Med. 2004;9:279285.
68. Troosters, T, Gosselink, R, Decramer, M. Short- and long-term effects of outpatient rehabilitation in patients with chronic obstructive pulmonary disease: A randomized trial. Am J Med. 2000;109:207212.
69. UK BEAM Trial Team. United Kingdom back pain exercise and manipulation (UK BEAM) randomised trial: Cost effectiveness of physical treatments for back pain in primary care. BMJ. 2004;329:13811385.
70. Van Den Hout, WB, de Jong, Z, Munneke, M, et al. Cost-utility and cost-effectiveness analyses of a long-term, high-intensity exercise program compared with conventional physical therapy in patients with rheumatoid arthritis. Arthritis Rheum. 2005;53:3947.
71. Van Der Roer, N, van Tulder, M, van Mechelen, W, et al. Economic evaluation of an intensive group training protocol compared with usual care physiotherapy in patients with chronic low back pain. Spine. 2008;33:445451.
72. van Tubergen, A, Boonen, A, Landewe, R, et al. Cost effectiveness of combined spa-exercise therapy in ankylosing spondylitis: A randomized controlled trial. Arthritis Rheum. 2002;47:459467.
73 van Tulder, M, Furlan, A, Bombardier, C, et al. ; Editorial Board of the Cochrane Collaboration Back review Group. Updated method guidelines for systematic reviews in the Cochrane collaboration back review group. Spine. 2003;28:12901299.
74. Williams, KS, Assassa, RP, Gillies, CL, et al. A randomized controlled trial of the effectiveness of pelvic floor therapies for urodynamic stress and mixed incontinence. BJU Int. 2006;98:10431050.
75. Williamson, L, Wyatt, MR, Yein, K, et al. Severe knee osteoarthritis: A randomized controlled trial of acupuncture, physiotherapy (supervised exercise) and standard management for patients awaiting knee replacement. Rheumatology. 2007;46:14451449.
76. Wright, A, Lloyd Davies, A, Williams, S, et al. Individual active treatment combined with group exercise for acute and subacute low back pain. Spine. 2005;30:12351241.
77. Yu, CM, Lau, CP, Chau, J, et al. A short course of cardiac rehabilitation program is highly cost effective in improving long-term quality of life in patients with recent myocardial infarction or percutaneous coronary intervention. Arch Phys Med Rehabil. 2004;85:19151922.
78. Zhang, YM, Sun, HX. Influence of early rehabilitative exercise in patients with myocardial infarction. Chin J Clin Rehabil. 2006;10:164–16.

Keywords

Type Description Title
WORD
Supplementary materials

Roine supplementary material
Supplementary table

 Word (328 KB)
328 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed