Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T16:45:02.238Z Has data issue: false hasContentIssue false

Stream Eclipse Mapping with ‘Fire-Flies’

Published online by Cambridge University Press:  12 April 2016

C. M. Bridge
Affiliation:
Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT
Pasi Hakala
Affiliation:
Observatory, University of Helsinki, Finland
Mark Cropper
Affiliation:
Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT
Gavin Ramsay
Affiliation:
Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We apply a new method of eclipse mapping to the light curves of eclipsing polars. The technique aims to locate the bright emission associated with the accretion stream, using a technique that makes the fewest prior assumptions about the location of the accretion stream material. We have obtained data of EP Dra and HU Aqr with the S-Cam 2 superconducting tunnel junction camera using the William Herschel Telescope. The location of emission regions in both systems show that previously assumed trajectories are consistent with those found using our technique. Most of the emission is located in a region where we expect material to be confined to magnetic field lines, particularly for HU Aqr, while there appears to be a lack of emission from where we conventionally expect material to follow a ballistic trajectory from the L1 point.

Type
Part 5. Accretion Streams
Copyright
Copyright © Astronomical Society of the Pacific 2004

References

Bridge, C. M., Cropper, M., Ramsay, G., (+ 6 co-authors) 2002, MNRAS, 336, 1129 Google Scholar
Bridge, C. M., Cropper, M., Ramsay, G., de Bruijne, J. H.J., Reynolds, A. P, Perryman, M. A.C 2003, MNRAS, 341, 863 CrossRefGoogle Scholar
Charbonneau, P. 1995, ApJS, 101, 309 Google Scholar
Hakala, P. 1995, A&A, 296, 164 Google Scholar
Hafala, P., Cropper, M., Ramsay, G. 2002, MNRAS, 334, 990 Google Scholar
Harrop-Allin, M. K. 1999, PhD thesis, Univ. London Google Scholar
Harrop-Allin, M. K., Hakala, P. J, Cropper, M. 1999a, MNRAS, 302, 362 Google Scholar
Harrop-Allin, M. K., Cropper, M., Hakala, P. J, Hellier, C., & Ramseyer, T. 1999b, MNRAS, 308, 807 Google Scholar
Harrop-Allin, M. K., Potter, S. B., Cropper, M. 2001, MNRAS, 326, 788 Google Scholar
Heerlein, C., Horne, k., & Schwope, A. D 1999, MNRAS, 304, 145 Google Scholar
Kohonen, T. 1990, Proc. of the IEEE, 78, 1464 Google Scholar
Kube, J., Gänsicke, B. T., & Beuermann, k. 2000, A&A, 356, 490 Google Scholar
Lubow, S. H & Shu, F. H. 1975, ApJ, 198, 383 Google Scholar
Perryman, M. A. C., Cropper, M., Ramsay, G., Favata, F., Peacock, A., Rando, N., Reynolds, A. 2001, MNRAS, 324, 899 CrossRefGoogle Scholar
Schwope, A. D & Mengel, S. 1997, AN, 318, 25 Google Scholar
Vrielmann, S. & Schwope, A. D. 2001, MNRAS, 322, 269 Google Scholar
Wu, K. & Wickramasinghe, D. T 1993, MNRAS, 260, 141 Google Scholar