Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-19T03:47:10.145Z Has data issue: false hasContentIssue false

The Spectral Turnover of the “Filled-Center” Supernova Remnant 3C 58: Implications for When Acceleration Occurs

Published online by Cambridge University Press:  12 April 2016

D. A. Green*
Affiliation:
Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

IRAS observations the “filled-center” supernova remnant 3C 58 are used to derived upper limits of 0.4, 0.4, 0.8, and 1.5 Jy for its infrared flux density at 12, 25, 60, and 100 μm, respectively. These values imply a break in the spectrum of 3C58 above a few tens of gigahertz—two orders of magnitude below the break in the spectrum of the Crab Nebula—with a change of spectral index across the break for 3C 58 of more than 0.5. This is similar to previous results for another “filled-center” remnant, G74.9+1.2, from radio observations alone. This implies that their emission is not dominated by a constant injection rate of particles with a power-law distribution. Either the break is due to synchrotron losses in the past, with little particle injection in recent times or it is intrinsic to the acceleration mechanism at work (presumably from a central neutron star).

Subject headings: acceleration of particles — ISM: individual (3C 58) — radiation mechanisms: nonthermal — supernova remnants

Type
Pulsars, Supernovae, and Supernova Remnants
Copyright
Copyright © The American Astronomical Society 1994

References

Arendt, R.G. 1989, ApJ, 70, 181 Google Scholar
Baldwin, J.E. 1971, in IAU Symp. 46, The Crab Nebula, ed. Davies, R. D., & Smith, F.G. (Dordrecht: Reidel), 22 Google Scholar
Becker, R.H., Helfand, D.J., & Szymkowiak, A.E. 1982, ApJ, 255, 557 Google Scholar
Davelaar, J., Smith, A., & Becker, R.H. 1986, ApJ, 300, L59 Google Scholar
Frail, D.A., & Moffett, D.A. 1993, ApJ, 408, 637 Google Scholar
Green, D.A. 1986, MNRAS, 218, 533 Google Scholar
Green, D.A. 1988, in NATO ASI Ser. C, Mathematical and Physical Sciences, Vol. 220 Genesis and Propagation of Cosmic Rays, ed. Shapiro, M. M., & Wefel, J.P. (Dordrecht: Reidel), 205 Google Scholar
Green, D.A. 1991, PASP, 103, 209 Google Scholar
Green, D.A., & Gull, S.F. 1982, Nature, 299, 606 CrossRefGoogle Scholar
Green, D.A., & Scheuer, P.A.G., 1992, MNRAS, 258, 833 CrossRefGoogle Scholar
Jones, F.C. 1970, Phys. Rev. D, 2, 2787 CrossRefGoogle Scholar
Landecker, T.L., & Caswell, J.L. 1983, AJ, 88, 1810 Google Scholar
Kardashev, N.S. 1962, Soviet Astron. 6, 317 Google Scholar
Marsden, P.L., Gillett, F.C., Jennings, R.E., Emerson, J.P., de Jong, T., & Olnon, F.M. 1984, ApJ, 278, L29 CrossRefGoogle Scholar
Morsi, H.W., & Reich, W. 1987, A&AS, 69, 533 Google Scholar
Pacini, F., & Salvati, M. 1973, ApJ, 186, 249 CrossRefGoogle Scholar
Parsons, D.C., Richards, P.J., & Giaretta, D.L. 1989, Starlink User Note 91, Rutherford Appleton LaboratoryGoogle Scholar
Rees, N., 1990, MNRAS, 244, 233 Google Scholar
Reich, W., Fürst, E., & Sofue, Y. 1984, A&A, 133, L4 Google Scholar
Reynolds, S.P., & Aller, H.D. 1988, ApJ, 327, 845 CrossRefGoogle Scholar
Reynolds, S.P., & Chevalier, R.A. 1984, ApJ, 278, 630 Google Scholar
Salter, C.J., Reynolds, S.P., Hogg, D.E., Payne, J.M., & Rhodes, P.J. 1989, ApJ, 338, 171 Google Scholar
Scheuer, P.A.G. 1984, Adv. Space Res., 4, 337 Google Scholar
Seward, F.D. 1989, Space Sci. Rev., 49, 385 Google Scholar
Velusamy, T., Becker, R.H., Goss, W.M., & Helfand, D.J. 1989, J. Astrophy. Astron. 10, 161 Google Scholar
Weiler, K.W. 1983, Observatory, 103, 85 Google Scholar
Wilson, A.S., & Weiler, K.W. 1976, A&A, 49, 357 Google Scholar