Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T17:54:38.400Z Has data issue: false hasContentIssue false

Simulation in Laboratory of Solid Grains Present in Space

Published online by Cambridge University Press:  12 April 2016

L. Colangeli
Affiliation:
Dipartimento Ingegneria Industriale, Università di Cassino, via Zamosch 43, 03043 Cassino, Italy
E. Bussoletti
Affiliation:
Istituto Universitario Navale, via Acton 38, 80133 Napoli, Italy Osservatorio Astronomico di Capodimonte, via Moiariello 16, 80131 Napoli, Italy
V. Mennella
Affiliation:
Osservatorio Astronomico di Capodimonte, via Moiariello 16, 80131 Napoli, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Laboratory data on cosmic dust analogue materials are compared with recent results obtained by means of spectroscopy and mass spectrometry on cometary dust, meteorites and interplanetary dust. Their actual chemical and physical properties can be further clarified, as well as possible links with interstellar dust.

Type
Interplanetary Dust: Physical and Chemical Analysis
Copyright
Copyright © Kluwer 1991

References

Allamandola, L. J., Sandford, S. A. and Wopenka, B. (1987) ’Interstellar polycyclic aromatic hydrocarbons and carbon in interplanetary dust particles and meteorites’, Science 237, 5659.Google Scholar
Anders, E., Lewis, R.S., Ming, T., Zinner, E. (1989) ’ Interstellar grains in meteorites: diamond and silicon carbide’, in Allamandola, L. J. and Tielens, A. G. G. M. (eds.), Interstellar Dust, Kluwer Academic Publishers, Dordrecht, 389402.Google Scholar
Borghesi, A., Bussoletti, E., Colangeli, L. and de Blasi, C. (1985) ’Laboratory study of SiC submicron particles at IR wavelengths: a comparative analysis’, Astron. Astrophys. 153, 18.Google Scholar
Bussoletti, E., Colangeli, L., Borghesi, A. and Orofino, V. (1987) ’Tabulated extinction efficiencies for various types of submicron amorphous carbon grains in the wavelength range 1000 Å - 300 μm’, Astron. Astrophys. Suppl. Ser. 70, 257268.Google Scholar
Chyba, C. and Sagan, C. (1987) ’Infrared emission by organic grains in the coma of comet Halley’, Nature 330, 350353.Google Scholar
Colangeli, L., Schwehm, G., Bussoletti, E., Fonti, S., Blanco, A. and Orofino, V. (1990) ’Hydrogenated amorphous carbon grains in comet Halley ?’, Astrophys. J. 348, 718724.Google Scholar
Cronin, J.R. and Pizzarello, S. (1990) ’Aliphatic hydrocarbons of the Murchison meteorite’, Geochim. Cosmochim. Acta, in press.Google Scholar
Fonti, S., Blanco, A., Bussoletti, E., Colangeli, L., Lugara’, M., Mennella, V., Orofino, V. and Scamarcio, G. (1990) ’ Raman spectra of different carbonaceous materials of astrophysical interest’, Infrared Phys. 30, 1925.CrossRefGoogle Scholar
Frenklach, M., Carmer, C.S. and Feigelson, E.D. (1989) ’Silicon carbide and the origin of interstellar carbon grains’, Nature 339, 196198.CrossRefGoogle Scholar
Hanner, M.S., Newburn, R.L., Gehrz, R.D., Harrison, T., Ney, E.P. and Hayward, T.L. (1990) ’ The infrared spectrum of comet Bradfield (1987s) and the silicate emission feature’, Astrophys. J. 348, 312321.CrossRefGoogle ScholarPubMed
Jessberger, E.K., Christoforidis, A. and Kissel, J. (1988) ‘Aspects of the major element composition of Halley’s dust’, Nature 332, 691695.Google Scholar