Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T23:06:30.294Z Has data issue: false hasContentIssue false

Resonant Scattering and Recombination in CAL 87

Published online by Cambridge University Press:  22 February 2018

J. Greiner
Affiliation:
MPE Garching, 85741 Garching, Germany
A. Iyudin
Affiliation:
MPE Garching, 85741 Garching, Germany Moscow, Russia
M. Jimenez-Garate
Affiliation:
MIT, Cambridge, MA 02139USA
V. Burwitz
Affiliation:
MPE Garching, 85741 Garching, Germany
R. Schwarz
Affiliation:
Universität Göttingen, 37083 Germany
R. DiStefano
Affiliation:
CfA, Cambridge, MA 02138USA
N. Schulz
Affiliation:
MIT, Cambridge, MA 02139USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The eclipsing supersoft X-ray binary CAL 87 has been observed with Chandra on August 13/14, 2001 for nearly 100 ksec, covering two full orbital cycles and three eclipses. The shape of the eclipse light curve derived from the zeroth-order photons indicates that the size of the X-ray emission region is about 1.5 R. The ACIS/LETG spectrum is completely dominated by emission lines without any noticeable continuum. The brightest emission lines are significantly redshifted and double-peaked, suggestive of emanating in a 2000 km/s wind. We model the X-ray spectrum by a mixture of recombination and resonant scattering. This allows us to deduce the temperature and luminosity of the ionizing source to be kT ~ 50 — 100 eV and Lx ~ 5 x 1037 erg/s.

Resumen

Resumen

Se observó la binaria (eclipsante de rayos X supersuave CAL 87 con Chandra el 13/14 de agosto de 2001, durante; casi 100 ksec, completando dos ciclos orbitales totales y tres eclipses. La forma de la curva de luz del eclipse derivada de los fotones de orden cero indica que el tamano de la región de emisión de rayos X es de alrededor de 1.5 R El espectro ACIS/LETG está dominado por completo por las líneas de emisión sin ningún continuo apreciable. Las líneas de emisión más brillantes presentan un corrimiento al rojo significativo y dos picos, sugiriendo que se producen en un viento de 2000 km/s. Realizamos un modelo del espectro de rayos X mezclando la dispersión de recombinación y resonancia. Esto nos permite deducir que la temperatura y la luminosidad de la fuente ionizante son kT ~ 50 — 100 eV y Lx ~ 5 x 1037 erg/s, respectivamente

Type
The Contributed Papers
Copyright
Copyright © Instituto de astronomia/revista mexicana de astronomίa y astrofίsica 2004

References

Asai, K., Dotani, T., Nagase, F., Ebisawa, K., Mukai, K. et al. 1998, ApJ 503, L143 CrossRefGoogle Scholar
Callanan, P.J., Machin, G., Naylor, T., Charles, P.A. 1989, MNRAS 241, 37pGoogle Scholar
Cowley, A.P., Schmidtke, P.C., Crampton, D., Hutchings, J.B. 1990, ApJ 350, 288 Google Scholar
Dotani, T., Asai, K., Ebisawa, K., Greiner, J., 2000, COSPAR, Adv. Space Res. 25, No. 3/4, 375 Google Scholar
Ebisawa, K., Mukai, K., Kotani, T., et al. 2001, ApJ 550, 1007 Google Scholar
Long, K. S., Helfand, D. J., Grabelsky, D. A. 1981, ApJ 248, 925 CrossRefGoogle Scholar
Pakull, M. W., Beuermann, K., van der Klis, M., van Paradijs, J., 1988, A&A 203, L27 Google Scholar
Parmar, A. N., Kahabka, P., Hartmann, H. W. et al., 1997, A&A 323, L33 Google Scholar
Schandl, S., Meyer-Hofmeister, E., Meyer, F., 1997, A&A 318, 73 Google Scholar
Schmidtke, P. C., McGrath, Т.K., Cowley, A. P., Frattare, L. M. 1993, PASP 105, 863 Google Scholar