Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-08-01T01:37:10.395Z Has data issue: false hasContentIssue false

Recurrent Novae

Published online by Cambridge University Press:  12 April 2016

Ronald F. Webbink*
Affiliation:
Department of Astronomy, University of Illinois, 1011 W. Springfield Ave., Urbana, IL 61801, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thermonuclear models of recurrent novae demand white dwarf accretors near the Chandrasekhar mass. In this case, the known recurrent novae should possess classical counterparts bearing the same structural parameters and space distribution, save for having only marginally less massive white dwarfs. Furthermore, recurrent novae should occur exclusively on ONeMg white dwarfs, and display in their ejecta either neon-group overabundances (if the white dwarfs are eroded through an outburst cycle) or no heavy element enhancements whatever (if the white dwarfs increase in mass).

The known recurrent novae are reviewed in the light of these and other characteristics of thermonuclear runaway models, and also in terms of accretion-powered events, with special attention to the difficulties encountered by both models. Pivotal tests to distinguish between between thermonuclear and accretion models rely on the fact that the latter require far more mass transferred than the former to produce the same outburst energetics. Thus, photospheric opacities in thermonuclear recurrent novae are dominated by scattering; those in recurrent accretion events by true absorption. Orbital period changes through outburst are 103 times greater in accretion models than in thermonuclear models.

Type
4. Related Objects
Copyright
Copyright © Springer-Verlag 1990

References

Barrera, L., and Vogt, N. 1990, in The Physics of Classical Novae, I.A.U. Colloq. No. 122, ed Cassatella, A. (Berlin: Springer), in press.Google Scholar
Bode, M.F., and Kahn, F.D. 1985, Monthly Notices R. Astr. Soc., 217, 205.Google Scholar
Callus, C.M., Evans, A., and Albinson, J.S. 1986, Irish Astr. J., 17, 330.Google Scholar
Cassatella, A., Gilmozzi, R., and Selvelli, P. 1985, in Recent Results on Cataclysmic Variables, ed. Burke, W.R. (Noordwijk: ESA SP-236), p. 213.Google Scholar
Catchpole, R.M. 1969, Monthly Notices R. Astr. Soc., 142, 119.Google Scholar
Duerbeck, H.W. 1987, Space Sci. Rev., 45, 1.Google Scholar
Duerbeck, H.W. 1988, Astr. Astrophys., 197, 148.Google Scholar
Duerbeck, H.W., and Seitter, W.C. 1990, in The Physics of Classical Novae, I.A.U. Colloq. No. 122, ed. Cassatella, A. (Berlin: Springer), in press.Google Scholar
Garcia, M.R. 1986, Astr. J., 91, 1400.CrossRefGoogle Scholar
Hanes, D.A. 1985, Monthly Notices R. Astr. Soc., 213, 443.Google Scholar
Hjellming, R.M., van Gorkom, J.H., Taylor, A.R., Seaquist, E.R., Padin, S., Davis, R.J., and Bode, M.F. 1986, Astrophys. J. (Letters), 305, L71.CrossRefGoogle Scholar
Huggins, W. 1866, Monthly Notices R. Astr. Soc., 26, 275.Google Scholar
Isles, J.E. 1975, J. Brit. Astr. Assoc., 85, 217.Google Scholar
Kenyon, S.J., and Fernandez-Castro, T. 1987, Astr. J., 93, 938.CrossRefGoogle Scholar
Kenyon, S.J., and Garcia, M.R. 1986, Astr. J., 91, 125.CrossRefGoogle Scholar
Kenyon, S.J., and Webbink, R.F. 1984, Astrophys. J., 279, 252.Google Scholar
Kraft, R.P. 1958, Astrophys. J., 127, 625.Google Scholar
Kukarkin, B.V., and Parenago, P.P. 1934, Perem. Zvezdy, 4, 251.Google Scholar
Lines, H.C., Lines, R.D., and McFaul, T.G. 1988, Astr. J., 95, 1505.CrossRefGoogle Scholar
Livio, M., Truran, J.W., and Webbink, R.F. 1986, Astrophys. J., 308, 736.CrossRefGoogle Scholar
Marsden, B.G., Wagner, R.M., Starrfield, S.G., Cassatella, A., and Hurst, G.M. 1989, I.A.U. Circ, No. 4783.Google Scholar
Nauenberg, M. 1972, Astrophys. J., 175, 417.Google Scholar
Payne-Gaposchkin, C. 1957, The Galactic Novae (Amsterdam: North-Holland).Google Scholar
Plavec, M.J. 1980, in Close Binary Stars: Observations and Interpretation, I.A.U. Symp. No. 88, ed. Plavec, M.J., Popper, D.M., and Ulrich, R.K. (Dordrecht: Reidel), p. 251.Google Scholar
Popper, D.M. 1980, Ann. Rev. Astr. Astrophys., 18, 115.Google Scholar
Sekiguchi, K., Feast, M.U., Whitelock, P.A., Overbeek, M.D., Wargau, W., and Spencer Jones, J. 1988, Monthly Notices R. Astr. Soc., 234, 281.CrossRefGoogle Scholar
Sekiguchi, K., Catchpole, R.M., Fairall, A.P., Feast, M.W., Kilkenny, D., Laney, C.D., Lloyd Evans, T., Marang, F., and Parker, Q.A. 1989, Monthly Notices R. Astr. Soc., 236, 611.Google Scholar
Sharov, A.S. 1987, Pis’ma Astr. Zh., 13, 427 (English transl.: Sov. Astr. Letters, 13, 175).Google Scholar
Snijders, M.A.J. 1987, in RS Ophiuchi (1985) and the Recurrent Nova Phenomenon, ed. Bode, M.F. (Utrecht: VNU Science Press), p. 51.Google Scholar
Taylor, A.R., Davis, R.J., Porcas, R.W., and Bode, M.F. 1989, Monthly Notices R. Astr. Soc., 237, 81.Google Scholar
Truran, J.W., and Livio, M. 1986, Astrophys. J., 308, 721.Google Scholar
Truran, J.W., Livio, M., Hayes, J., Starrfield, S., and Sparks, W.M. 1988, Astrophys. J., 324, 345.Google Scholar
Wallerstein, G., and Garnavich, P.M. 1986, Pub. Astr. Soc. Pacific, 98, 875.Google Scholar
Webbink, R.F. 1976, Nature, 262, 271.Google Scholar
Webbink, R.F., Livio, M., Truran, J.W., and Orio, M. 1987, Astrophys. J., 314, 653.Google Scholar
Williams, G. 1983, Astrophys. J. Suppl., 53, 523.Google Scholar
Williams, R.E. 1977, Veröff. Remeis-Sternw. Bamberg, 11, 242.Google Scholar
Williams, R.E. 1982, Astrophys. J., 261, 170.Google Scholar
Williams, R.E., Sparks, W.M., Gallagher, J.S., Ney, E.P., Starrfield, S.G., and Truran, J.W. 1981, Astrophys. J., 251, 221.CrossRefGoogle Scholar