Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T19:20:58.988Z Has data issue: false hasContentIssue false

Photometric Effects of Accretion Disks in Long-Period Eclipsing Binaries

Published online by Cambridge University Press:  12 April 2016

Edward C. Olson*
Affiliation:
Astronomy DepartmentUniversity of Illinois1011 W. Springfield Ave. Urbana, Illinois 61801USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Accretion disks are invoked in a variety of astrophysical settings, ranging from stellar-mass black holes to active galactic nuclei. There is now little doubt that true accretion disks can also occur in binaries containing non-degenerate stars (Peters 1980; Plavec et al. 1984; Polidan 1987). In this paper, I will discuss some of the properties of disks observed photometrically in the long-period systems KU Cyg and RZ Oph.

The most intensively-studied disks are of course those in cataclysmic binaries. Accretion disks in such binaries are thought to have the classical ′alpha′ structure of Shakura and Sunyaev (1973), in which viscous dissipation arising from differential rotation converts gravitational potential energy to thermal energy in supplying the disk luminosity. This physical process requires that the viscous time scale be comparable to the radiative decay time of the disk (Pringle 1981). Most of the disk′s volume is optically thick, so disk luminosity is estimated by integrating black-body or stellar atmospheric fluxes over the disk (see Kriz and Hubeny 1986 for qualifications).

Type
Research Article
Copyright
Copyright © Kluwer 1989

References

Baldwin, B. W. (1978). Astrophys. J. 226, 937.Google Scholar
Crawford, R.C. (1981). Thesis, UCLA Astronomy Department.Google Scholar
Hall, D.S., Cannon, R.O. III, and Rhombs, C.G. (1973). Publ. Astron. Soc. Pac. 85, 420.Google Scholar
Hall, D.S., Cannon, R.O. III, and Rhombs, C.G. (1984). Astron. J. 89, 559.Google Scholar
Hall, D.S., and Stuhlinger, T. (1978). Astron. Acta 231, 207.Google Scholar
Hall, D. S., and Walter, K. (1975). Astron. Astrophys. 38, 225.Google Scholar
Kenyon, S.J. (1988). Astron. J. 96, 337.CrossRefGoogle Scholar
Knee, L.B.G., Scarfe, C.D., Mayor, M., Baldwin, B.W., and Meatheringham, S.J. (1986). Astron. Astrophys. 168, 72.Google Scholar
Koch, R.H. (1972). Astron. J. 71, 500.Google Scholar
Kriz, S., and Hubeny, I. (1986). Bull. Astron. Inst. Czechosl. 37, 129.Google Scholar
Kriz, , Arsenijevic, J. Grygar, J., Harmanec, P., Horn, J., Koubsky, S., Pavlovski, K., Zverko, J., and Zdarsky, F. (1980). Bull. Astron. Inst. Czechosl. 31, 284.Google Scholar
Olson, E.C. (1987). Astron. J. 94, 1309.Google Scholar
Olson, E.C. (1988). Submitted to Astron. J.Google Scholar
Olson, E.C., and Hickey, J.P. (1983). Astrophys. J. 264, 251.Google Scholar
Olson, E.C., and Stoehr, C.A. (1986). Astron. J. 91, 1418.Google Scholar
Persson, S.E. (1988). Publ. Astron. Soc. Pacific 100, 710.CrossRefGoogle Scholar
Peters, G.J. (1980), in Close Binary Stars : Observation and Interpretation, ed. Plavec, M.J., Popper, D. M., and Ulrich, R. K., p 287.CrossRefGoogle Scholar
Plavec, M. (1988). Astron. J. 96, 755.Google Scholar
Plavec, M., Dobias, J.J., Etzel, P.B., and Weiland, J.E. (1984), in Future of Ultraviolet Astronomy Based on Six Years of IUE Research, p 240.Google Scholar
Polidan, R.S. (1987). Bull. Amer. Astron. Soc. 19, 709.Google Scholar
Popper, D.M. (1964). Astrophys. J. 139, 143.Google Scholar
Popper, D.M. (1965). Astrophys. J. 141, 314.Google Scholar
Pringle, J.E. (1981). Annu. Rev. Astron. Astrophys. 19, 137.Google Scholar
Shakura, N.I., and Sunyaev, R.A. (1973). Astron. Astrophys. 24, 337.Google Scholar
Shao, C-Y (1967). Astron. J. 72, 480.Google Scholar
Shaviv, G., and Wehrse, R. (1986). Astron. Astrophys. 159, L5.Google Scholar
Stuhlinger, T., Shaw, J.S., and Hall, D.S. (1984). Astron. J. 89, 562.Google Scholar
Wilson, R.E., and Plavec, M. (1988). Astron. J. 95, 1828.CrossRefGoogle Scholar