Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T11:27:13.888Z Has data issue: false hasContentIssue false

Observation of Ionization of Laser Excited Atoms by Synchrotron Radiation

Published online by Cambridge University Press:  12 April 2016

J.M. Bizau
Affiliation:
Laboratoire de Spectroscopic Atomique et Ionique and Laboratoire pour l’Utilization du Rayonnemet Electromagnetique, Universite Paris-Sud, Orsay, France 91405
F. Wuilleumier
Affiliation:
Laboratoire de Spectroscopic Atomique et Ionique and Laboratoire pour l’Utilization du Rayonnemet Electromagnetique, Universite Paris-Sud, Orsay, France 91405
P. Gerard
Affiliation:
Laboratoire de Spectroscopic Atomique et Ionique and Laboratoire pour l’Utilization du Rayonnemet Electromagnetique, Universite Paris-Sud, Orsay, France 91405
P. Dhez
Affiliation:
Laboratoire de Spectroscopic Atomique et Ionique and Laboratoire pour l’Utilization du Rayonnemet Electromagnetique, Universite Paris-Sud, Orsay, France 91405
B. Carré
Affiliation:
Service de Physique des Atomes et des Surfaces CEN, Saclay, France 91191
G. Spiess
Affiliation:
Service de Physique des Atomes et des Surfaces CEN, Saclay, France 91191
D.L. Ederer
Affiliation:
Radiation Physics Division National Bureau of Standards Gaithersburg, MD 20899
J.L. Picqué
Affiliation:
Laboratoire Aimé Cotton CNRS, Orsay, France 91405
J.L. LeGouet
Affiliation:
Laboratoire Aimé Cotton CNRS, Orsay, France 91405
J.C. Keller
Affiliation:
Laboratoire Aimé Cotton CNRS, Orsay, France 91405
P. Koch
Affiliation:
Physics Dept., State University of New York Stony Brook, NY 11790

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have begun a program to measure oscillator strengths of autoionizing resonances that result from a transition in the VUV between a laser excited initial state and a final state in which a core electron is promoted. These measurements demonstrate a new technique to combine synchrotron radiation, laser pumping, and photoelectron spectroscopy.

Measurements of the energy positions of autoionizing resonances have been honed to a fine art over the past 50 years. Total cross section measurements and the parameters that describe autoionizing resonances have been determined. Most of these studies have been made from the dipole allowed ground state. Recently autoionizing resonances have been observed from excited initial states and from ion initial states. We have heard several talks, at this meeting which described some of this type of research. In the measurements to be described in this paper, laser radiation is combined with synchrotron radiation, as shown schematicaly in Figure 1, to study the photoionization from excited initial states to continuum final states or to autoionizing final states. Continuum radiation from the Aneau de Collisions d’Orsay (ACO), which is installed at the Universite de Paris-Sud, in Orsay France, is monochromatized by a toroidal grating monochromator (TGM) and is focused by a toroidal output mirror on to a weakly collimated sodium beam emanating from a furnace mounted on the axis of a cylinderical mirror analyzer (CMA). This electron spectrometer is used to study the kinetic energy distribution of the ejected photoelectrons produced by the interaction of the photon beam with the focused synchrotron radiation.

Type
Session 5. Experimental Atomic Physics
Copyright
Copyright © Naval Research Laboratory 1984. Publication courtesy of the Naval Research Laboratory, Washington, DC.

References

1. Beutler, H., Physics, Z. 93, 177 (1935); Codling, K., Rep. Prog. Physics 36, 541 (1973).Google Scholar
2. Krause, M.O., Cerrina, F., and Fahlman, T., Phys. Rev. Lett. 50, 118 (1983); Samson, J.A.R., Phys. Lett. 28C, 303 (1976).CrossRefGoogle Scholar
3. Hill, W. III, Cheng, K.T., Johnson, W., Lucatorto, T.B., McIlrath, T.J., and J. Sugar, Physical Rev. Lett. 49, 1634 (1982).Google Scholar
4. McIlrath, T.J. and Lucatorto, T.B., Phys. Rev. Lett. 38, 1390 (1977).CrossRefGoogle Scholar
5. Baig, M.A., Connerade, J.P., Garton, W.R.S.. Hornes, J., Noldeke, C., and Sommer, K., these proceedings.Google Scholar
6. McIlrath, T.J., Cromer, C., Kaufman, V., Sugar, J., Hill, W.T. III, and Cooper, D., these proceedings.Google Scholar
7. Larsen, P.K., Van Bers, W.A.M., Bizau, J.M., Wuilleumier, F., Schmidt, V., and Ederer, D.L., Nucl. Instrun. Meth. 295, 245 (1982).CrossRefGoogle Scholar
8. Krummacher, S., Schmidt, V., Bizau, J.M., Ederer, D.L., Dnez, P., and Wuilleunier, F., J. Phys. B. 15, 4363 (1982).Google Scholar
9. Krummacher, S., Schmidt, V., Wuilleumier, F., Bizau, J.M., and Ederer, O.L., J. Phys. B. 16, 1733 (1983).Google Scholar
10. LeGouëet, J.L., Picqué, J.L., Uuilleumer, F., Bizau, J.M., Dhez, P., Koch, P., and Ederer, D.L.. Phys. Rev. Lett. 48, 600 (1982).CrossRefGoogle Scholar
11. Sugar, J., Lucatorto, T.B., McIlrath, T.J., Weiss, A.W., Opt. Lett. 4, 109 (1979).CrossRefGoogle Scholar
12. Krause, M.O., Chem. Phys. Lett. 10, 65 (1971).CrossRefGoogle Scholar
13. Chang, T.M. and Kim, Y.S., J. Phys. B. 15, L835 (1982).Google Scholar