Skip to main content Accessibility help
×
Home

Numerical Methods in Convection Theory

  • N. O. Weiss (a1)

Summary

Two and three-dimensional computations have enlarged our understanding of nonlinear convection, particularly in Boussinesq fluids. However, we cannot adequately predict the relationship between convective heat transport and the superadiabatic temperature gradient. Nor is there any indication of a preferred length scale, other than the depth of the convecting layer, in a compressible fluid.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Numerical Methods in Convection Theory
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Numerical Methods in Convection Theory
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Numerical Methods in Convection Theory
      Available formats
      ×

Copyright

References

Hide All
Böhm, K.-H., 1967. Aerodynamic phenomena in stellar atmospheres (IAU Symp. No. 28) ed. Thomas, R. N., p. 366, Academic Press, London.
Böhm, K.-H., 1975. Physique des mouvements dans les atmosphères stellaires, ed. Cayrel, R. and Steinberg, M., p. 57, CNRS, Paris.
Brown, W., 1973. J. Fluid Mech. 6038, 539.
Busse, F. H., 1967. J. Math. Phys. 4638, 140.
Busse, F. H., 1969. J. Fluid Mech. 3738, 457.
Busse, F. H., 1972. J. Fluid Mech. 5238, 97.
Busse, F. H. and Whitehead, J. A., 1974. J. Fluid Mech. 6638, 67.
Clever, R. M. and Busse, F. H. , 1974. J. Fluid Mech. 6538, 625.
Cocke, W. J., 1967. Astrophys. J. 15038, 1041.
Deubner, F. L., 1976. Astr. Astrophys. 4738, 475.
Fromm, J. E., 1965. Phys. Fluids 838, 1757.
Gough, D. O., 1969. J. Atmos. Sci. 2638, 448.
Gough, D. O., 1976. Trans. IAU 16A Part 238, 169.
Gough, D. O., Moore, D. R., Spiegel, E. A. and Weiss, N. O., 1976. Astrophys. J. 20638, 536.
Gough, D. O., Spiegel, E. A. and Toomre, J., 1975. J. Fluid Mech. 6838, 695.
Gough, D. O. and Weiss, N. O., 1976. Mon. Not. R. Astr. Soc. 17638, 589.
Graham, E., 1975. J. Fluid Mech. 7038, 689.
Graham, E. and Moore, D. R. 1977. In preparation.
Howard, L. N., 1963. J. Fluid Mech. 1738, 405.
Jones, C. A., Moore, D. R. and Weiss, N. O., 1976. J. Fluid Mech. 7338, 353.
Jones, C. A. and Moore, D. R., 1977. In preparation.
Kirk, J. G. and Livingston, W., 1968. Solar Phys. 338, 510.
Krishnamurti, R., 1970a. J. Fluid Mech. 4238, 295.
Krishnamurti, R., 1970b. J. Fluid Mech. 4238, 309.
Krishnamurti, R., 1973. J. Fluid Mech. 6038, 285.
Latour, J., Spiegel, E. A., Toomre, J. and Zahn, J.-P., 1976. Astrophys. J. 20738, 233.
Lipps, F. B., 1976. J. Fluid Mech. 7538, 113.
Moore, D. R. and Weiss, N. O., 1973. J. Fluid Mech. 5838, 289.
Musman, S., 1972. Solar Phys. 2638, 290.
Plows, W., 1968. Phys. Fluids 1138, 1593.
Rossby, H. T., 1969. J. Fluid Mech. 3638, 309.
Schneck, P. and Veronis, G., 1967. Phys. Fluids 1038, 927.
Schwarzschild, M., 1961. Astrophys. J. 134, 1.
Spiegel, E. A., 1965. Astrophys. J. 14138, 1068.
Spiegel, E. A., 1971a. Comm. Astrophys. Space Phys. 338, 53.
Spiegel, E. A., 1971b. Ann. Rev. Astr. Astrophys. 938, 323.
Spiegel, E. A., 1972. Ann. Rev. Astr. Astrophys. 1038, 261.
Straus, J., 1972. J. Fluid Mech. 5638, 353.
Tootnre, J., Gough, D. O. and Spiegel, E. A., 1977. J. Fluid Mech. 7938, 1.
Toomre, J., Zahn, J.-P., Latour, J. and Spiegel, E. A., 1976. Astrophys. J. 207, 545.
Vandakurov, Yu. V., 1975a. Solar Phys. 4038, 3.
Vandakurov, Yu. V., 1975b. Solar Phys. 4538, 501.
Veltishchev, N. F. and Želnin, A. A., 1975. J. Fluid Mech. 6838, 353.
Veronis, G., 1966. J. Fluid Mech. 2638, 49.
Vickers, G. T., 1971. Astrophys. J. 16338, 363.
Weiss, N. O., 1976. Basic mechanisms of solar activity (IAU Symp. No. 7138), ed. Bumba, V. and Kleczek, J., p. 229, Reidel, Dordrecht.
Widnall, S., 1975. Ann. Rev. Fluid Mech. 738, 141.
Widnall, S. and Sullivan, J., 1973. Proc. Roy. Soc. A 33238, 335.
Willis, G. E. and Deardorff, J. W., 1967. Phys. Fluids 1038, 931.
Willis, G. E. and Deardorff, J. W., 1970. J. Fluid Mech. 4438, 661.

Numerical Methods in Convection Theory

  • N. O. Weiss (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed