Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-14T10:26:33.325Z Has data issue: false hasContentIssue false

MHD Simulations of Solar and Interplanetary Phenomena

Published online by Cambridge University Press:  12 April 2016

M. Dryer*
Affiliation:
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado (Boulder), also National Oceanic and Atmospheric Administration/Space Environ. Laboratory, Boulder, Colorado 80303, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Workers in the field of magnetohydrodynamics (MHD) have been interested in the hypothesis that observed solar activities can be utilized in a deterministic way to predict the bulk flow consequences of these activities in the three-dimensional heliosphere. Exploration of this hypothesis, using the conventional/classic initial boundary value approach, will be reviewed against the background of basic, ideal (except for shocks) one-fluid approximations. This work has been divided into two parts: near-Sun simulations in two dimensions of coronal mass ejections (CMEs) as well as interplanetary simulations in 2D and 3D of propagating shocks. In the latter case, the flows behind the shocks should be thought of as interplanetary “ICMEs”, i.e., the interplanetary, evolutionary consequences of the near-Sun simulations.

Initialization of these simulations has been based on observations (optical, soft X-ray, radio) from both ground- and space-based instruments. Simulation outputs have been compared with in situ plasma and field observations and interplanetary scintillations (IPS). Improvements in the initialization procedures - spatial/temporal variations of solar plasma and field parameters at the coronal base - are expected from YOHKOH, SOHO, CORONAS-I, and TRACE experiments. “Ground truth” observations from WIND, SOHO, ACE, and INTERBALL experiments should then be compared with three-dimensional MHD outputs in tests of the fluid hypothesis noted above.

Type
Numerical Modelling
Copyright
Copyright © Kluwer 1997

References

1. Chen, J. and Garren, D.A.: 1993, Geophys. Res. Lett., 20, 2319 Google Scholar
2. Cuperman, S., Bruma, C., Dryer, M. and Semel, M.: 1995, Astron. Astrophys., in pressGoogle Scholar
3. Detman, T.R., Dryer, M., Yeh, T., Han, S.M., Wu, S.T. and McComas, D.J.: 1991, J. Geophys. Res. 96, 9531 Google Scholar
4. Dryer, M., Wu, S.T., Steinolfson, R.S. and Wilson, R.M.: 1978, Astrophys. J. 227, 1059 Google Scholar
5. Dryer, M.: 1982, Space Sci. Rev., 33, 233 Google Scholar
6. Dryer, M.: 1994, Space Sci. Rev., 67, 363 Google Scholar
7. Forbes, T.G. and Priest, E.R.: 1982, Solar Phys., 81, 303 Google Scholar
8. Fushiki, T. and Sakai, J.-I.: 1995, Solar Phys. 156, 265 Google Scholar
9. Gosling, J.T.: 1993, J. Geophys. Res. 98, 18937 Google Scholar
10. Guo, W.P., Wang, J.F., Liang, B.X. and Wu, S.T.: 1992, Eruptive Solar Flares (Svestka, Z., Jackson, B.V. and Machado, M.E., eds.) IAU Colloq. 133, Springer-Verlag, Berlin, pp. 381384,Google Scholar
11. Heras, A.M., Sanahuja, B., Smith, Z.K., Detman, T.R. and Dryer, M.: 1992, Astrophys. J. 391, 359 Google Scholar
12. Hood, A.W. and Priest, E.R.: 1980, Solar Phys., 66, 113 Google Scholar
13. Hu, Y.Q. and Wu, S.T.: 1984, J. Comp. Phys, 55, 33 Google Scholar
14. Hu, Y.Q.: 1990, Chinese J. of Space Sci., 10, 163 Google Scholar
15. Hundhausen, A.J.: 1993, J. Geophys. Res., 98, 13177 Google Scholar
16. Janardhan, P., Balasubramanian, V., Ananthakrishnan, S., Dryer, M., Bhatnagar, A. and McIntosh, P.S.: 1995, Solar Phys., submittedGoogle Scholar
17. Karlicky, M. and Odstrcil, D.: 1994, Solar Phys. 155, 171 Google Scholar
18. Klimchuk, J.A. and Sturrock, P.A.: 1989, Astrophys. J., 345, 1034 Google Scholar
19. Linker, J.A. and Mikic, Z.: 1995, Astrophys. J., 438, L45 Google Scholar
20. Low, B.C.: 1981, Astrophys. J., 251, 352 Google Scholar
21. Low, B.C.: 1982, Rev. Geophys. Space Phys., 20, 145 Google Scholar
22. Manoharan, P.K., Ananthakrishnan, S., Dryer, M., Detman, T.R., Leinbach, H., Kojima, T., Watanabe, T. and Khan, J.: 1995, Solar Phys. 156, 377 Google Scholar
23. McAllister, A.H., Dryer, M., Mclntosh, P., Singer, H. and Weiss, L.: 1994, Proc. SOHO III Workshop, ESA SP-373, Paris, pp. 315318,Google Scholar
24. Mikic, Z., Barnes, D.C. and Schnack, D.D.: 1988, Astrophys. J., 328, 830 Google Scholar
25. Sakai, J.-I. and Fushiki, T.: 1995, Solar Phys. 156, 281 Google Scholar
26. Sime, D.G., MacQueen, R.M. and Hundhausen, A.J.: 1984, J. Geophys. Res. 89, 2113 Google Scholar
27. Steinolfson, R.S. and Hundhausen, A.J.: 1988, J. Geophys. Res. 93, 14269 Google Scholar
28. Stepanova, T.V. and Kosovichev, A.G.: 1994, Space Sci. Rev., 70, 176 Google Scholar
29. Sun, M.T., Wu, S.T. and Dryer, M.: 1995, J. Computational Phys. 116, 330 Google Scholar
30. Usmanov, A.V. and Dryer, M.: 1995, Solar Phys., in pressGoogle Scholar
31. Vandas, M., Fischer, S., Dryer, M., Smith, Z. and Detman, T.R.: 1995, J. Geophys. Res., in pressGoogle Scholar
32. Wang, A.H., Wu, S.T., Suess, S.T. and Poletto, G. 1995, Solar Phys., in pressGoogle Scholar
33. Wu, S.T., Dryer, M., Nakagawa, Y. and Han, S.M.: 1982, Astrophys. J. 262, 369 Google Scholar
34. Wu, S.T., Hu, Y.Q., Nakagawa, Y. and Tandberg-Hanssen, E.: 1983, Astrophys. J., 266, 866 Google Scholar
35. Wu, S.T., Song, M.T., Martens, P.C.H. and Dryer, M.: 1991, Solar Phys., 134, 353 Google Scholar
36. Wu, S.T., Dryer, M. and Wu, C.-C.: 1992, Proc. of 26th ESLAB Symposium, ESA SP-346, Paris, pp. 333336,Google Scholar
37. Wu, S.T., Wang, A.H. and Guo, W.P.: 1995a, IAU Colloq. 154, in press, this ProceedingsGoogle Scholar
38. Wu, S.T., Guo, W.P. and Wang, J.F.: 1995b, Solar Phys., in pressGoogle Scholar
39. Zhang, J.H., Wu, S.T., Dryer, M. and Wei, F.S.: 1994, Solar Coronal Structures:(Rusin, V., Heinzel, P. and Vial, J.C., Eds.), IAU Colloq. 144, VEDA Publ. Co., Bratislava, pp.9195,Google Scholar