Skip to main content Accessibility help
×
Home

Infrared Techniques for Comet Observations

Published online by Cambridge University Press:  12 April 2016

Martha S. Hanner
Affiliation:
Jet Propulsion Laboratory California, Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109
Alan T. Tokunaga
Affiliation:
Institute for Astronomy , University of Hawaii 2680 Woodlawn Drive Honolulu, HI 96822
Rights & Permissions[Opens in a new window]

Abstract

The infrared spectral region (1–1000 μm) is important for studies of both molecules and solid grains in comets. Infrared astronomy is in the midst of a technological revolution, with the development of sensitive 2–dimensional arrays leading to infrared cameras and spectrometers with vastly improved sensitivity and resolution. The Halley campaign gave us tantalizing first glimpses of the comet science possible with this new technology, evidenced, for example, by the many new spectral features detected in the infrared. The techniques of photometry, imaging, and spectroscopy are reviewed in this chapter and their status at the time of the Halley observations is described.

Type
Section I: Observing Techniques and Interpretation
Copyright
Copyright © Kluwer 1991

References

A’Hearn, M.F. (1988). ‘Observations of cometary nuclei,’ Ann. Rev. Earth Planetary Sci. 16, 273293.CrossRefGoogle Scholar
A’Hearn, M.F., Dwek, E., and Tokunaga, A.T. (1984). ‘Infrared photometry of Comet Bowell and other comets.’ Astrophys. J. 282, 803 CrossRefGoogle Scholar
Aitken, D.K., and Roche, P.F. (1982). ‘8-13 μm spectrophotometry of compact planetary nebulae and emission line objects.’ Mon. Not. R. Astr. Soc. 200, 217 CrossRefGoogle Scholar
Allen, D.A., and Cragg, T.A. (1983). ‘The AAO JHKL’ photometric standards.’ MNRAS 203, 777783.CrossRefGoogle Scholar
Becklin, E.E., and Westphal, J.A. (1966). ‘Infrared Observations of Comet 1965f.’ Astrophys. J. 145, 445.CrossRefGoogle Scholar
Beichman, C., et al. (1985). ‘IRAS Explanatory Suppl.ement,’ Chapter VI.Google Scholar
Blackwell, D.E., Leggett, S.K., Petford, A.D., Mountain, C.M., and Selby, M.J. (1983). ‘Absolute calibration of the infrared flux from Vega at 1.24, 2.20, 3.76, and 4.6 μm by comparison with a standard furnace.’ MNRAS 205, 897905.Google Scholar
Bockelée-Morvan, D., and Crovisier, J. (1989). ‘The nature of the 2.8-μm emission feature in cometary spectra.’ Astron. Astrophys. 216, 278 Google Scholar
Booth, A.J., Selby, M.J., Blackwell, D.E., Petford, A.D., and Arribas, S. (1989). ‘Determination of the absolute flux from Vega at 2.25 μm.’ Astron. Astrophys. 218, 167 Google Scholar
Bregman, J.D., Campins, H., Witteborn, F.C., Wooden, D.H., Rank, D.M., Aflamándola, L.J., Cohen, M., and Tielens, A.G.G.M. (1987). ‘Airborne and groundbased spectrophotometry of comet P/Halley from 5-13 micrometers.’ Astron. Astrophys. 187, 616 Google Scholar
Brooke, T.Y., Knacke, R.F., and Joyce, R.R. (1987). ‘The near-infrared polarization and color of comet P/Halley, Astron. Astrophys. 187, 621 Google Scholar
Campins, H., Joy, M., Harvey, P.M., Lester, D.F., and Ellis, H.B. (1987). ‘Airborne photometry of Comet Halley from 40 to 160 microns.’ Astron. Astrophys. 187, 632 Google Scholar
Campins, H., Rieke, G.H., and Lebofsky, M.J. (1985). ‘Absolute calibration of photometry at 1 through 5 μm.’ Astron. J. 90, 896.CrossRefGoogle Scholar
Campins, H., Bregmaii, J.D., Witteborn, F.C., Wooden, D.H., Rank, D.M., Allamandola, L.J., Cohen, M., and Tielens, A.G.G.M. (1987). ‘Airborne spectrophotometry of cornet Halley from 5 to 9 microns.’ In Proc. 20th ESLAB Symp. on the Exploration of Halley’s Comet (Battrick, B., Rolfe, E.J., and Reinhard, R., Eds.), ESA SP-250, Vol. 2, p. 121.Google Scholar
Campins, H., and Tokunaga, A., (1988). ‘Infrared observations of the dust coma.’ In Infrared Observations of Comets Halley and Wilson and Properties of the Grains, NASA Conf. Pub. 3004 (Hanner, M.S., Ed.), p. 1.Google Scholar
Campins, H., Rieke, M.J., and Rieke, G.H. (1989). ‘An infrared color gradient in the inner coma of Comet Halley.’ Icarus 78, 54 CrossRefGoogle Scholar
Campins, H., and Ryan, E.V. (1989). ‘The identification of crystalline olivine in cometary silicates.’ Astrophys. J. 341, 1059.CrossRefGoogle Scholar
Carter, B.S. (1990). ‘Southern JHKL standards.’ MNRAS 242, 15.CrossRefGoogle Scholar
Combes, M., et al. (1986). ‘Infrared sounding of comet Halley from VEGA 1.’ Nature 321, 266 CrossRefGoogle Scholar
Crovisier, J. (1989). ‘Infrared cometary spectroscopy.’ In 22nd ESLAB Symp. on Infrared Spectroscopy in Astronomy, ESA SP-290, in press.Google Scholar
Drapatz, S., Larson, H.p., and Davis, D.S. (1987). ‘Search for methane in comet P/Halley.’ Astron. Astrophys. 187, 497 Google Scholar
Dreiling, L.A., and Bell, R.A. (1980). ‘The chemical composition, gravity and temperature of Vega.’ Astrophys. J. 241, 736 CrossRefGoogle Scholar
Elias, J.H., Frogel, J.A., Matthews, K., and Neugebauer, G. (1982). ‘Infrared standard stars.’ Astron. J. 87, 1029.CrossRefGoogle Scholar
Elias, J.H., Frogel, J.A., Hyland, A.R., and Jones, T.J. (1983). ‘Comparison of the Mt. Stromlo/AAO. and Cal Tech/Tololo infrared photometric systems.’ Astron. J. 88, 1027.CrossRefGoogle Scholar
Engels, D., Sherwood, W.A., Wamsteker, W., and Schultz, G.V. (1981). ‘Infrared observations of southern bright stars.’ Astron. Astrophys. Suppl. Ser. 45, 5 Google Scholar
Gehrz, R.D. Grasdalen, G.L., and Hackwell, J.A. (1987). ‘Infrared astronomy.’ In Encyclopedia of Physical Science and Technology 2, 53 Google Scholar
Gehrz, R.D., Hackwell, J.A., and Jones, T.W. (1974). ‘Infrared observations of Be stars from 2.3 to 19.5 microns.’ Astrophys. J. 191, 675 CrossRefGoogle Scholar
Gezari, D.Y., Folz, W.C., Woods, L.A., and Woolridge, J.B. (1988). ‘A 58 x 62 pixel Si:Ga array camera for 5-14 μm astronomical imaging.’ Proc. SPIE. 973, in press.CrossRefGoogle Scholar
Gillett, F.C., Dereniak, E.L., and Joyce, R.R. (1977). ‘Detectors for infrared astronomy.’ Opt. Engr. 16, 544 Google Scholar
Gillett, F.C., Low, F.J., and Stein, W.A. (1968). ‘Stellar spectra from 2.8-14 microns.’ Astrophys. J. 154, 677 CrossRefGoogle Scholar
Glaccum, W., Moseley, S.U., Campins, H., and Loewenstein, R.F. (1987). ‘Airborne spectropho tometry of P/IIalley from 20 to 65 microns.’ Astron Astrophys. 187, 635 Google Scholar
Glass, I.S. (1974). ‘JHKL photometry of 145 southern stars.’ Mon. Not. Astr. Soc. S. Africa 33, 53.Google Scholar
Grasdalen, G.L., Gehrz, R.D., Hackwell, J.A., and Freedman, R. (1985). ‘20-micron transparency and atmospheric water vapor at the Wyoming infrared observatory.’ Pub. Astron. Soc. Pac. 97, 1013.CrossRefGoogle Scholar
Hackwell, J.A. (1971). ‘Emission spectrum of comet Bennett.’ Observatory 91, 33 Google Scholar
Hall, D.N.B., Aikens, R.S., Joyce, R., and McCurnin, T.W., (1975). ‘Johnson noise limited opera tion of photovoltaic InSb detectors.’ App. Optics 14, 450.CrossRefGoogle Scholar
Hammel, H.B., Telesco, C.M., Campins, H., Decher, R., Storrs, A.D., and Cruikshank, D.P. (1987). ’Albedo maps of comets P/Halley and P/Giacobini-Zinner.’ Astron. Astrophys. 187, 665 Google Scholar
Hanner, M.S. (1984). ‘A comparison of the dust properties in recent periodic comets.’ Adv. Space Res., 4, (9), 189.CrossRefGoogle Scholar
Hanner, M.S., Tokunaga, A.T., Veeder, G.J., and A’Hearn, M.F. (1984). ‘Infrared photometry of the dust in comets.’ Astron. J. 89, 162 Google Scholar
Hanner, M.S., Kupferman, P.N., Bailey, G., and Zarnecki, J.C. (1987). ‘Infrared imaging with JPL’s linear array camera.’ In Infrared Astronomy with Arrays (Wynn-Williams, C.G. and Becklin, E.E., Eds.), Institute for Astronomy, Univ. of Hawaii, Honolulu, P. 205.Google Scholar
Hanner, M.S., Ed. (1988). ‘Infrared observations of Comets Halley and Wilson and properties of the grains,’ NASA Conference Publ. 3004.Google Scholar
Hayward, T.L., and Grasdalen, G.L. (1987). ‘Infrared images of comets. I. P./Giacobini-Zinner (1985e).’ Astron. J. 94, 1339.CrossRefGoogle Scholar
Hayward, T.L., Grasdalen, G.L., and Green, S.F., (1988). ‘An albedo map of P/Halley on 13 March 1986.’ In Infrared Observations of Comets Halley and Wilson and Properties of the Grains, NASA Conf. Pub. 3004 (Hanner, M.S., Ed.), p. 151.Google Scholar
Hayes, D.S. (1985). ‘Stellar absolute fluxes and energy distributions from 0.32 to 4.0 μm.’ In IAU Symp. Ill, Calibration of Fundamental Stellar Quantities (Hayes, D.S., Pasinetti, L.E., and Philip, A.G. D., Eds.), Reidel, Dordrecht, p. 225.CrossRefGoogle Scholar
Herter, T., Campins, H., and Gull, G.E. (1987). ‘Airborne spectrophotometry of P/IIalley from 16 to 30 microns.’ Astron. Astrophys. 187, 629.Google Scholar
Johnson, H.L. (1966). ‘Astronomical measurements in the infrared,’ Ann. Rev. Astron. Ap. 193.CrossRefGoogle Scholar
Johnson, H.L. (1965). ‘The absolute calibration of the Arizona photometry,’ Comm. Lunar Plan. Lab 3, 73.Google Scholar
Johnson, H.L. (1965). ‘Interstellar extinction in the galaxy,’ Astrophys. J. 141, 923.CrossRefGoogle Scholar
Johnson, H.L., et al. (1966). Comm. Lunar Plan. Lab 4, 99 Google Scholar
Jones, T.J., and Hyland, A.R. (1982). ‘Multiaperture JHK photometry of the globular clusters in the Fornax dwarf spheroidal galaxies.’ Mon. Not. Roy. Astr. Soc. 200, 509 CrossRefGoogle Scholar
Joyce, R. (1989). ‘Availability of KPNO IR spectrometer (CRSP).’ NOAO Newsletter No. 17, p. 22.Google Scholar
King, I. (1952). ‘A note on the concept of effective wavelength.’ Astrophys. J. 115, 580 CrossRefGoogle Scholar
Koornneef, J. (1983). ‘Near infrared photometry I.’ Astron. Astrophys. Suppl. Ser. 51, 489 Google Scholar
Koornneef, J. (1983). ‘Near infrared photometry II.’ Astron. Astrophys. 128, 8493.Google Scholar
Krisciunas, K., Sinton, W., Tholen, D., Tokunaga, A., Golisch, W., Griep, D., Kaminski, C., Impey, C., and Christian, C.. (1987). ‘Atmospheric extinction and night sky brightness at Mauna Kea.’ Pub. Astron. Soc. Pac. 99, 887 CrossRefGoogle Scholar
Kurucz, R.L. (1979). ‘Model atmospheres for G, F, A, B and O stars’. Ap.J. Suppl. 40, 1 CrossRefGoogle Scholar
Larson, H.P., Weaver, H.A., Mumma, M.J., and Drapatz, S. (1989). ‘Airborne infrared spectroscopy of comet Wilson (1986I) and comparisons with comet Halley.’ Astrophys. J., submitted.CrossRefGoogle Scholar
Lester, D.F., Harvey, P.M., and Carr, J. (1988). ‘Properties of the gas and stellar content of the superluminous galaxy NGC 6240.’ Astrophys. J. 329, 641 CrossRefGoogle Scholar
Lockwood, G.W., and Thompson, D.T. (1986). ‘Atmospheric extinction - the ordinary and volcanically induced variations, 1972-1985.’ Astron. J. 92, 976 CrossRefGoogle Scholar
Low, F.J. (1961). ‘Low-temperature germanium bolometer.’ J. Opt. Soc. Am. 51, 1300.CrossRefGoogle Scholar
Low, F.J., and Rieke, G.H. (1974). ‘The instrumentation and techniques of infrared photometry.’ In Methods of Experimental Physics, Vol. 12 (Carelton, N., Ed.), Academic Press, N.Y., pp. 415452.Google Scholar
Manduca, A., and Bell, R.A. (1979). ‘Atmospheric extinction in the near-infrared.’ Pub. Astron. Soc. Pac. 91, 848 CrossRefGoogle Scholar
Merrill, K.M. (1974). ‘8-13 μm spectrophotometry of comet Kohoutek.’ Icarus 23, 566 CrossRefGoogle Scholar
Moorwood, A.F.M. (1987). ‘IRSPEC.: Design, performance and first scientific results.’ In Infrared Astronomy with Arrays (Wynn-Williams, C.G. and Becklin, E.E., Eds.), Univ. of Hawaii, Honolulu, P. 379.Google Scholar
Moroz, V.I., et al. (1987). ‘Detection of parent molecules in comet P/Halley from the IKS-Vega experiment.’ Astron. Astrophys. 187, 513 Google Scholar
Morrison, D., and Lebofsky, L. (1979). ‘Radiometry of asteriods.’ In Asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, P. 184.Google Scholar
Mountain, C.M., Leggett, S.K., Selby, M.J., Blackwell, D.E., and Petford, A.D. (1985). ‘Measure ment of the absolute flux from Vega at 4.92 μm.’ Astron. Astrophys. 151, 399402.Google Scholar
Mumma, M.J., Weaver, H.A., Larson, H.P., Davis, D.S., and Williams, M. (1986). ‘Detection of water vapor in Halley’s comet.’ Science 232, 1523.CrossRefGoogle ScholarPubMed
Mumma, M.J., Blass, W.E., Weaver, H.A., and Larson, H.P. (1988). ‘Measurements of the ortho-para ratio and the nuclear spin temperature of water vapor in comets Halley and Wilson (1986I) and implications for their origin and evolution.’ BAAS 20, 826; Proc. Workshop on Formation and Evolution of Planetary Systems, STScI, May 9-11, 1988.Google Scholar
Neckel, H., and Labs, D. (1981). ‘Improved data of solar spectral irradiance from 0.33 to 1.25 μm.’ Solar Phys. 74, 231 CrossRefGoogle Scholar
Ney, E.P. (1974). ‘Multiband photometry of comets Kohoutek, Bennett, Bradfield, and Encke.’ Icarus, 23, 551 CrossRefGoogle Scholar
Ney, E.P. (1982). ‘Optical and infrared observations of comets in the range 0.5 μm to 20 μm.’ In Comets (Wilkening, L.L., Ed.), Univ. Arizona Press, Tucson, P. 323.Google Scholar
Rieke, G.H., Lebofsky, M.J., and Low, F.J. (1985). ‘An absolute photometric system at 10 and 20 μm.’ Astron. J. 90, 900 CrossRefGoogle Scholar
Ridgway, S.T., and Hinkle, K.H. (1988). ‘The impact of array detectors on high resolution infrared spectroscopy.’ In The Impact of Very High S/N Spectroscopy on Stellar Physics (Strobel, G. Cayrel de and Spite, M., Eds.), p. 61.CrossRefGoogle Scholar
Rode, J.P., Blackwell, J.D., Blessinger, M.A., and Vural, K. (1987). ‘SWIR HgCdTe focal plane arrays for astronomy.’ In Infrared Astronomy with Arrays (Wynn-Williams, C.G. and Becklin, E.E., Eds.), Institute for Astronomy, Univ. of Hawaii, Honolulu, P. 13.Google Scholar
Schnopper, H.W., and Thompson, R.I. (1974). ‘Fourier spectrometers.’ In Methods of Experimen tal Physics, Vol. 12, Part A (Carleton, N., Ed.), Academic Press, N.Y., p. 491.Google Scholar
Serkowski, K. (1974). ‘Polarization techniques.’ In Methods of Experimental Physics, 12 (Carleton, N., Ed.) Academic Press, N.Y., p. 361.Google Scholar
Simpson, J.P., Cuzzi, J.N., Erickson, E.F., Strecker, D.W., and Tokunaga, A.T. (1981). ‘Mars: Far-infrared spectra and thermal emission models.’ Icarus 48, 230245.CrossRefGoogle Scholar
Shure, M., Nagata, T.M., Tokunaga, A.T., Forrest, W.J., Pipher, J.L., and Woodward, C.E. (1989). ’Ground-based infrared imaging of comet Halley.’ In preparation.Google Scholar
Sinton, W.M., and Tittemore, W.C. (1984). ‘Photometric standard stars for L’ and M filter bands.’ Astron. J. 89, 1366.CrossRefGoogle Scholar
Stacey, G.J., Lugten, J.B., and Genzel, R. (1987). ‘Detection of OH rotational emission from comet P/Halley in the far-infrared.’ Astron. Astrophys. 187, 451.Google Scholar
Telesco, C.M., Decher, R., Baugher, C., Campine, H., Mozurkewich, D., Thronson, H.A., Cruikshank, D.P., Hammel, H.B., Larson, S., and Sekanina, Z. (1986). ‘Thermal-infrared and visual imaging of comet Giacobini-Zinner.’ Astrophys. J. Lett. 310, 61.CrossRefGoogle Scholar
Tokunaga, A.T. (1989). ‘Infrared detector arrays and some applications to spectroscopy.’ Ap. Space Sci. 160, 333 CrossRefGoogle Scholar
Tokunaga, A.T. (1986). The NASA Infrared Telescope Facility Photometry Manual.Google Scholar
Tokunaga, A.T. (1984). ‘A reevaluation of the 20 magnitude system.’ Astron. J. 89, 172 CrossRefGoogle Scholar
Tokunaga, A.T., Golisch, W.F., Griep, D.M., Kaminski, C.D., and Hanner, M.S. (1986). ‘The NASA infrared telescope facility Comet Halley monitoring program. I. Preperihelion results.’ Astron. J. 92, 1183.CrossRefGoogle Scholar
Tokunaga, A.T., Smith, R.G., and Irwin, E. (1987). ‘Use of a 32-element Reticon array for 1 to 5 micrometer spectroscopy.’ In Infrared Astronomy with Arrays (Wynn-Willians, C.G. and Becklin, E.E., Eds.), Univ. of Hawaii, Honolulu, P. 367.Google Scholar
Wade, R. (1983). ‘A 1-5 micron cooled grating array spectrometer and Fabry-Perot system for the UKIRT.’ Proc. SPIE 445, 47.CrossRefGoogle Scholar
Walker, R.G., Aumann, H.H., Davies, J., Green, S., De Jong, T., Houck, J.R., and Solfer, B.T. (1984). Observations of comet IRAS-Araki-Alcock 1983d.’ Astrophys. J. 278, Lll.CrossRefGoogle Scholar
Wamsteker, W. (1981). ‘Standard stars and calibration for JHKLM photometry,’ Astron. Astro phys. 97, 329.Google Scholar
Weaver, H.A. (1989). ‘The volatile composition of comets.’ In Highlights of Astronomy, 8, 387.CrossRefGoogle Scholar
Weaver, H.A., Mumma, M.J., Larson, H.P., and Davis, D.S. (1986). ‘Post-perihelion observations of water in comet Halley.’ Nature 324, 441.CrossRefGoogle Scholar
Witteborn, F.C., and Bregman, J.D. (1984). ‘A cryogenically cooled, multidetector spectrometer for infrared astronomy.’ Proc. SPIE 509, 123.CrossRefGoogle Scholar
Wolfe, W.L., and Zissis, G.J. (1978). The Infrared Handbook, P. 7-118.Google Scholar
Wright, E.L. (1976). ‘Recalibration of the far-infrared brightness temperatures of the planets.’ Astrophys. J. 210, 250.CrossRefGoogle Scholar
Wyckoff, S. (1982). Overview of comet observations.’ In Comets (Wilkening, L.L., Ed.), Univ. of Arizona Press, Tucson, P. 3.Google Scholar
Wynn-Williams, C.G., and Becklin, E.E., Eds. (1987). Infrared Astronomy with Arrays, Proc. Workshop on Ground-Based Astronomical Observations with Infrared Array Detectors. In stitute for Astronomy, Univ. of Hawaii, Honolulu Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 58 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-77fc7d77f9-mhpm4 Total loading time: 0.46 Render date: 2021-01-18T23:08:23.476Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 23:04:49 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Infrared Techniques for Comet Observations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Infrared Techniques for Comet Observations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Infrared Techniques for Comet Observations
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *