Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-27T15:15:48.805Z Has data issue: false hasContentIssue false

The Galactic Halo in Hydrostatic Equilibrium

Published online by Cambridge University Press:  12 April 2016

P.M.W. Kalberla
Affiliation:
Radioastronomisches Institut der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
J. Pietz
Affiliation:
Radioastronomisches Institut der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
J. Kerp
Affiliation:
Radioastronomisches Institut der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The large scale distribution of gas, magnetic field and cosmic rays in the Galaxy is explored. We analyze recent all-sky surveys of HI gas (Leiden/Dwingeloo survey), soft X-ray radiation (ROSAT) and high energy gamma-rays (EGRET > 100 MeV) in combination with the 408 MHz survey. Prom these observations we derive a Galactic halo model consistent with hydrostatic equilibrium conditions.

The large scale equilibrium configuration consists of two separate domains with different properties and scale sizes:

  1. 1) The gaseous halo consists of collisionally ionized gas at T=106.2K as well as HI and has an exponential scale height hz ~ 4.4 kpc. The radial distribution is characterized by the galactocentric scale length A1 ~ 15 kpc. All components of the halo – gas, magnetic field and cosmic rays – contribute equally to the pressure. The magnetic field in the halo is oriented parallel to the Galactic plane.

  2. 2) The disk extends up to a scale height of hz ~ 1 kpc and is associated with irregular magnetic fields. Here the pressure of the magnetic field is only ⅓ of the gas pressure. The cosmic rays are only weakly coupled to the disk.

Type
Part VIII High-Velocity Clouds, Galactic Halo Models, Observations of the LMC
Copyright
Copyright © Springer-Verlag 1998

References

Boulaxes, A. & Cox, D.P., (1990): ApJ 365, 544 (B&C).CrossRefGoogle Scholar
Fichtel, C.E. et al. (1994): ApJS 94, 551.CrossRefGoogle Scholar
Hasiam, C.G., Stoffel, H., Salter, C.J. & Wilson, W.E., (1982): A&AS 47, 1.Google Scholar
Lachiže-Rey, M., Asséo, E., Cesarsky, C.J. & Pellat, R., (1980): ApJ 238, 175.CrossRefGoogle Scholar
Parker, E.N., (1966): ApJ 145, 811.CrossRefGoogle Scholar
Reynolds, R.J. (1997): in Proc. of 156. WE-Heraeus-Seminar on ‘The Physics of Galactic Halos’, eds. Lesch, H., Dettmar, R.-J., Mebold, U., & Schlickeiser, R., Akademie Verlag, Berlin, 57.Google Scholar
Taylor, J.H. & Cordes, J.M., (1993): ApJ 411, 674.CrossRefGoogle Scholar
Strong, A.W. & Mattox, J.R., (1995): A&A 308, L21.Google Scholar
Webber, W.R., Lee, M.A. & Gupta, M. (1992): ApJ 390, 96.CrossRefGoogle Scholar