Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T11:52:04.907Z Has data issue: false hasContentIssue false

EUV Constraints on Models of Low Mass X-Ray Binaries

Published online by Cambridge University Press:  12 April 2016

D.J. Christian
Affiliation:
Center for EUV Astrophysics, 2150 Kittredge St. Berkeley, CA, 94720-5030, USA
J.E. Edelstein
Affiliation:
Department of Astronomy, Space Sciences Lab., University of California Berkeley, 94720, USA
M. Mathioudakis
Affiliation:
Center for EUV Astrophysics, 2150 Kittredge St. Berkeley, CA, 94720-5030, USA
K. McDonald
Affiliation:
Center for EUV Astrophysics, 2150 Kittredge St. Berkeley, CA, 94720-5030, USA
M.M. Sirk
Affiliation:
Center for EUV Astrophysics, 2150 Kittredge St. Berkeley, CA, 94720-5030, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present EUVE survey results for moderate column directions containing known low-mass X-ray binaries (LMXB). We derive Lexan band (100 Å) count rates and upper limits for nearly 40 LMXB chosen generally with EB-V ≤ 0.3. Detections include Sco X-1, Her X-1, and the GRO transient CJ0422+32. Super soft sources in the LMC yield 3 σ upper limits of ≤ 10 counts ks−1. The extrapolation of two component spectral models (such as blackbody plus thermal bremsstrahlung), are in agreement with the survey upper limits. Contemporary LMXB spectral models, which involve Comptonization in an inner disk corona, predict a large flux of EUV photons. If the above model is correct in the EUV, such a component could be detected in source with low column densities. We argue that additional intrasystem column hampers its detection.

Type
VIII. Novae, X-ray Binaries
Copyright
Copyright © Kluwer 1996

References

Bowyer, S. et al. 1994, ApJS, 93, 569 Google Scholar
Bowyer, S. et al. 1996, ApJS, in pressGoogle Scholar
Christian, D.J. & Swank, J.H. 1995, ApJ, submittedGoogle Scholar
Christian, D.J. 1993, Ph.D. Thesis, U. of Maryland Google Scholar
Greiner, J., Hasinger, G., & Thomas, H.C. 1994, A&A, 281, L61 Google Scholar
Hertz, P. & Grindlay, J.E. 1983, ApJ, 275, 105 CrossRefGoogle Scholar
Hasinger, G., & Van Der Klis, M. 1989, A&A, 255, 79 Google Scholar
Lamb, F.K. 1989, Proc. 23rd ESLAB Symp. 1, 215 Google Scholar
Lewis, J.W. 1993, JBIS, 46, 346 Google Scholar
Mitsuda, K. 1984, Ph.D. Thesis, U. of Tokyo Google Scholar
Morrison, R., & McCammon, D. 1983, ApJ, 270, 119 Google Scholar
Ponman, T.J., Foster, A.J., & Ross, R.R. 1990, MNRAS, 246, 287 Google Scholar
Schulz, N.S. & Wijers, R.A.M.J. 1993, A&A, 273, 123 Google Scholar
Sunyaev, R.A., & Titarchuk, L.G. 1980, Sov. Astr. L., 12, 117 Google Scholar
Vacca, W.D., Sztanjo, M., Lewin, W.H.G., Trumper, J., Van Paradijs, J., & Smith, A. 1987, A&A, 172, 143 Google Scholar
Van Paradijs, J. et al. 1990, PASJ, 42, 633 Google Scholar
Van Paradijs, J. 1993, X-ray Binaries, ed. Lewin, W.H.G. & van den Heuvel, E.P.J., Cambridge Univ. Press Google Scholar
Van Der Klis, M. 1989, ARA&A, 27, 517 Google Scholar
Vrtilek, S.D. et al. 1991, ApJS, 76, 1127 Google Scholar
Vritlek, S.D., et al. 1994, ApJL, 436, L9 CrossRefGoogle Scholar
White, N.E., Peacock, A., & Taylor, B.G. 1985, ApJ, 296, 475 Google Scholar
White, N.E., Stella, L., & Parmar, A. 1988, ApJ, 324, 363 Google Scholar