Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T19:10:48.667Z Has data issue: false hasContentIssue false

Dissociation Energies and Partition Functions of Small Molecules

Published online by Cambridge University Press:  12 April 2016

Michel Costes
Affiliation:
URA 348 CNRS, Photophysique et Photochimie Moléculaire, Université Bordeaux I, 33405 Talence cedex, France
Christian Naulin
Affiliation:
URA 348 CNRS, Photophysique et Photochimie Moléculaire, Université Bordeaux I, 33405 Talence cedex, France

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a simple dissociation equilibrium

the equilibrium constant Kp at temperature T can be written in terms of partial pressures p or densities n in the form given by Equation 6 of Tatum (1966)

where m is the reduced mass of AB, k the Boltzmann constant, h the Planck constant, QA, QB, QAB the internal partition functions of the species, and D0 the dissociation energy of AB. This equation derives from a more general expression of Kp (T) for a chemical reaction that is demonstrated in all physicalchemistry textbooks treating statistical thermodynamics (see for example Atkins 1990). Partition functions are weighted Boltzmann factors

with ϵn corresponding to the energy of the eigenstates of degeneracy gn. Provided all the eigenvalues are known, Q values can be calculated exactly. Derivations and calculations of the partition functions can be found in textbooks or in reviews relating to astrophysics.

Type
Research Article
Copyright
Copyright © Springer-Verlag 1994

References

Arnold, J.O., Nicholls, R.W., 1973, J. Quant. Spectrosc. Radiât. Transfer, 13, 115 Google Scholar
Atkins, P.W., Physical Chemistry, 4th Ed., 1990, (Oxford University Press, Oxford)Google Scholar
Bauschlicher, C.W., Langhoff, S.R., Taylor, P.R., 1988, Ap. J., 332, 531 CrossRefGoogle Scholar
Bernstein, R.B., 1982, Chemical Dynamics via Molecular Beam and Laser Techniques, (Oxford University Press, New York)Google Scholar
Brix, P., Herzberg, G., 1954, Can. J. Phys., 32, 110 CrossRefGoogle Scholar
Callear, A.B, Pilling, M.J., 1970, Trans. Faraday Soc, 66, 1618 CrossRefGoogle Scholar
Chase, Jr. M.W., Davies, C.A., Downey, Jr. J.R., Frurip, D.J., McDonald, R.A., Syverud, A.N., JANAF thermochemical tables, 3rd Ed., 1985, J. Phys. Chem. Ref. Data, 14, (Suppl. 1)Google Scholar
Colket, M.B. III, 1984, J. Quant. Spectrosc. Rad. Transfer, 31, 7 CrossRefGoogle Scholar
Costes, M., Naulin, C., Dorthe, G., Vaucamps, C., Nouchi, G., 1987, Faraday Discuss. Chem. Soc, 84, 75 CrossRefGoogle Scholar
Costes, M., Naulin, C., Dorthe, G., Daleau, G., Joussot-Dubien, J., Lalaude, C., Vinckert, M., Destor, A., Vaucamps, C., Nouchi, G., 1989, J. Phys. E: Sci. Instrum., 22, 1017 CrossRefGoogle Scholar
Costes, M., Naulin, C., Dorthe, G., 1990, Astron. Astrophys., 232, 270 Google Scholar
Curtiss, L.A., Raghavachari, K., Trucks, G.W., Popple, J.A., 1991, J. Chem. Phys., 94, 7221 CrossRefGoogle Scholar
Curtiss, L.A., Carpenter, J.E., Raghavachari, K., Popple, J.A., 1992, J. Chem. Phys., 96, 9030 CrossRefGoogle Scholar
Curtiss, L.A., Raghavachari, K., Popple, J.A., 1993, J. Chem. Phys., 98, 1293 Google Scholar
Dagdigian, P. J., Cruse, H. W., Zare, R. N., 1975, J. Chem. Phys., 62, 1824 CrossRefGoogle Scholar
Dingle, T.W., Freedman, P.A., Gelernt, B., Jones, W.J., Smith, I.W.M., 1975, Chem. Phys., 8, 171 CrossRefGoogle Scholar
Effenhauser, C.S., Felder, P., Huber, J.R., 1990, Chem. Phys., 142, 311 Google Scholar
Engleman, Jr. R., Rouse, P.E., 1975, J. Quant. Spectrosc. Radiât. Transfer, 15, 831 CrossRefGoogle Scholar
Eres, D., Gumiek, M., McDonald, J.D., 1984, J. Chem. Phys., 81, 5552 CrossRefGoogle Scholar
Ervin, K.M., Gronert, S., Barlow, S.E., Gilles, M.K., Arrison, A.G., Bierbaum, V.M., DePuy, CH., Lineberger, W.C., Barney Ellison, G., 1990, J. Am. Chem. Soc, 112, 5750 CrossRefGoogle Scholar
Huang, Y., Barts, S.A., Halpern, J.B., 1992, J. Phys. Chem., 96, 425 Google Scholar
Huber, K.P., Herzberg, G., 1979, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules., (Van Nostrand, New York)CrossRefGoogle Scholar
Jørgensen, U.G., Larsson, M., 1990, Astron. Astrophys., 238, 424 Google Scholar
Morley, G.P., Lambert, I.A., Ashfold, M.N.R., Rosser, K.N., Western, C.M., 1992, J. Chem. Phys., 97, 3157 CrossRefGoogle Scholar
Naulin, C., Costes, M., Ghanem, N., Dorthe, G., 1993, Chem. Phys. Letters, 202, 452 CrossRefGoogle Scholar
Pasternack, L., Dagdigian, P. J., 1977, J. Chem. Phys., 67, 3854 Google Scholar
Pedley, J.B., Naylor, R.D., Kirby, S.P., 1986, Thermochemical Data of Organic Compounds, 2nd ed., Chapman and Hall, London CrossRefGoogle Scholar
Sauvai, A.J., Tatum, J.B., 1984, Ap. J. Suppl. Ser., 56, 193 CrossRefGoogle Scholar
Sinha, K., Tripathi, B.M., 1986, Bull. Astron. Soc. India, 14, 40 Google Scholar
Tatum, J.B., 1966, Pub. Dom. Ap. Obs. Victoria, 13, 1 Google Scholar
Urdahl, R.S., Bao, Y., Jackson, W.M., 1991, Chem. Phys. Letters, 178, 425 Google Scholar
Wannenmacher, E.A.J., Lin, H., Jackson, W. M., 1990, J. Phys. Chem., 94, 6608.Google Scholar