Skip to main content Accessibility help
×
Home

A Diagnostic for Models of U Geminorum

  • B. Paczyński (a1), A. Schwarzenberg-Czerny (a1) and Charles Alcock (a2)

Extract

Models of U Geminorum fall into two basic types. Both involve a Roche-lobe filling main sequence dwarf orbiting a white dwarf, around which there is an accretion disk. In one type of model there is continuous mass accretion from the inner Lagrange point through the disk to the white dwarf at all times, and the outburst is produced by varying the mass transfer across the inner Lagrange point (Bath et al., 1974). In the second type of model, there is not any accretion from the outer edge of the disk to the white dwarf between outbursts, and matter streaming from the inner Lagrange point accumulates in a torus (Osaki 1974, Paczyński 1978). The outburst is a result of an instability in the disk that suddenly increases the viscosity. A simple diagnostic test of the former type of model is to model the luminosity produced from the accretion disk at minimum light. Following Smak (1976) we adopt a white dwarf mass of 0.9 M, inner and outer radii of the disk of 6.1 × 108 cm and 3.6 × 1010 cm, inclination 67°, and velocity of the stream hitting the disk of 400 km sec-1. Following Wade (1979) we adopt a distance modulus of 4m.4 and a maximum brightness in the visual band of 14m.76. Averaging this radiation over angles and using the velocity information gives a lower limit to the mass transfer rate of 10–10 M yr-1. Assuming that the disk is optically thick, and taking into account limb darkening in an approximate fashion, yields an expected brightness in the visual band Vdisk ≤ 12m.6. This is two magnitudes too bright. A crude analysis of optically thin disks indicates that stable configurations only exist for disk temperatures close to 1.5×10 °K. This temperature is too low for the accretion rate inferred here, if the disk is optically thin. For this reason the disk must be optically thick. Since the visual magnitude of the disk is too high if it is accreting, we conclude that continuous accretion does not occur at minimum light and that matter accumulates in a torus.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A Diagnostic for Models of U Geminorum
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A Diagnostic for Models of U Geminorum
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A Diagnostic for Models of U Geminorum
      Available formats
      ×

Copyright

References

Hide All
Bath, G. T., Evans, W. D., Papaloizou, J. and Pringle, J. E. 1974, M.N.R.A.S. 169, 447.
Osaki, Y. 1974, Pub. Astr. Soc. Japan, 26, 429.
Paczyński, B. 1978, in “Nonstationary Evolution of Close Binaries” ed. żytkow, A. N. (PWW: Warsaw) p. 89.
Smak, J. 1976 Acta, Astr. 26, 277.
Wade, R. 1979 A. J. 84, 562.

A Diagnostic for Models of U Geminorum

  • B. Paczyński (a1), A. Schwarzenberg-Czerny (a1) and Charles Alcock (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.