Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T04:20:14.394Z Has data issue: false hasContentIssue false

Definition and Practical Realization of the Reference Frame in the FK5 - The Role of Planetary Dynamics and Stellar Kinematics in the Definition

Published online by Cambridge University Press:  12 April 2016

Walter Fricke*
Affiliation:
Astronomisches Rechen-Institut Heidelberg, Federal Republic of Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The formulation of the fundamental reference system to be represented by the FK5 includes the determination of the equinox and equator on the basis of planetary dynamics and the application of the new expressions for the general precession in longitude adopted in the IAU (1976) System of Astronomical Constants. The role of hypotheses which entered the determination of the lunisolar precession is explained. Results are presented for the equinox and equator of the FK5 which are based on observations of the Sun, planets, and lunar occultations.

Type
Research Article
Copyright
Copyright © Reidel 1981

References

Anding, E.: 1905, In “Encyklopadie Math. Wiss.”, Vol. VI 2.1 p. 1. Eds. Schwarzschild, K., Oppenheimer, S.. Verlag Teubner, Leipzig 19051923.Google Scholar
Balakirev, A. N.: 1980, Astron. Tsirk Ak. Nauk. Moskva, No. 1100, 4.Google Scholar
Bauschinger, J.: 1922, Naturwissenschaften 10, 1005.Google Scholar
Bessel, F. W.: 1830, Tabulae Regiomontanae. Regiomonti Prussorum.Google Scholar
Bien, R., Fricke, W., Lederle, T., and Schwan, H.: Veröff. Astron. Rechen-Institut, Heidelberg, No. 29.Google Scholar
Boss, L.: 1910, Preliminary General Catalogue. Carnegie Institution, Washington, D.C.Google Scholar
Brosche, P.: 1966, Veroff. Astron. Rechen-Institut, Heidelberg, No. 17.Google Scholar
Brouwer, D.: 1950, Bull. Astron. Paris 15, 176.Google Scholar
Clemence, G. M.: 1966, Quart. J. Roy. Astron. Soc. 7, 10.Google Scholar
Duma, D. P.: 1978, Astron. Zh. 55, 1103 (Soviet Astron. 22 (5), 628).Google Scholar
DuMont, B.: 1977, Astron. Astrophys. 61, 127.Google Scholar
Fricke, W.: 1967, Astron. J. 72, 1368.Google Scholar
Fricke, W.: 1977a, Astron. Astrophys. 54, 363.Google Scholar
Fricke, W.: 1977b, Veröff. Astron. Rechen-Institut, Heidelberg, No. 28.Google Scholar
Fricke, W.: 1979, In “Dynamics of the Solar System”, p. 133. IAU Symp. No. 81. Ed. Duncombe, R. L.. Reidel Publ. Comp. Dordrecht-Holland.Google Scholar
Fricke, W.: 1980, Mitteil. Astron. Gesellschaft 48, 29.Google Scholar
Laubscher, R. E.: 1972, Astron. Astrophys. 20, 407.Google Scholar
Laubscher, R. E.: 1976, Astron. Astrophys. 51, 13.Google Scholar
Lieske, J. H., Lederle, T., Fricke, W., Morando, B.: 1977, Astron. Astrophys. 58, 1.Google Scholar
Milne, E. A.: 1935, Monthly Notices R. A. S. 95, 560.CrossRefGoogle Scholar
Newcomb, S.: 1872, Washington Observations for 1870. App. III. Washington.Google Scholar
Newcomb, S.: 1882, Astron. Pap. Washington Vol. 1, Part 4.Google Scholar
Newcomb, S.: 1895, The Elements of the Four Inner Planets and the Fundamental Constants of Astronomy, Washington.CrossRefGoogle Scholar
Newcomb, S.: 1898, Astron. Pap. Washington Vol. 8, Part 1.Google Scholar
Newcomb, S.: 1899, Astron. Pap. Washington Vol. 8, Part 2.Google Scholar
Ogorodnikov, K. F.: 1932 Z. Astrophysik 4, 190.Google Scholar
Schwan, H.: 1977, Veröff. Astron. Rechen-Institut, Heidelberg, No. 27.Google Scholar
Van Woerkom, A. J. J.: 1943, Bull. Astron. Inst. Neth. 9, 427.Google Scholar