Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-21T00:26:30.275Z Has data issue: false hasContentIssue false

Chemical Reactions and Dust Destruction in Protoplanetary Accretion Disks

Published online by Cambridge University Press:  27 February 2018

Frédéric Finocchi
Affiliation:
Institut für Theoretische Astrophysik, Universität Heidelberg, Tiergartenstr. 15, D-69121 Heidelberg, Germany
Hans-Peter Gail
Affiliation:
Institut für Theoretische Astrophysik, Universität Heidelberg, Tiergartenstr. 15, D-69121 Heidelberg, Germany
Wolfgang J. Duschl
Affiliation:
Institut für Theoretische Astrophysik, Universität Heidelberg, Tiergartenstr. 15, D-69121 Heidelberg, Germany Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
Werner M. Tscharnuter
Affiliation:
Institut für Theoretische Astrophysik, Universität Heidelberg, Tiergartenstr. 15, D-69121 Heidelberg, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A nonequilibrium calculation for the chemistry in a classical protoplanetary accretion disk is presented. Slow radial particle transport moves grains from the cold outer regions of a protoplanetary accretion disk into its warm central part where grains are destroyed. We consider the destruction processes for the silicate and carbon dust component and follow the chemical composition of the gas as a function of the radial distance from the protostar. The main result of this calculation is the presence of huge amounts of methane at a distance of ~ 1 AU from the protostar as product of the carbon dust destruction. It is very likely that more complex organics also are present' in this region.

Type
XIII. Relationships to Interstellar Dust
Copyright
Copyright © Astronomical Society of the Pacific 1996

References

Anders, E., Grevesse, N., 1989, Geoch. and Cosmoch. Acta, 53, 197 Google Scholar
Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Franck, P., Just, Th., Ker, J.A., Pilling, M.J., Troe, J., Walker, R.W., Warnatz, J., 1992, Jounal of physical and chemical reference data 21, 411 Google Scholar
Bauer, I., Finocchi, F., Duschl, W.J., Gail, H.-R., Schloder, J.P., 1996, A&A (submitted)Google Scholar
Draine, B.T., 1985, ApJS 57, 587 Google Scholar
Duschl, W.J., Gail, H.-R., Tscharnuter, W.M., 1996, A&A, (in press)Google Scholar
El-Gamal, M., 1995, Thesis, University of Stuttgart Mathis J.S., Rumpl, W., Nordsieck K.H., 1977, ApJ, 217, 425 Google Scholar
Mitchell, G.F., 1984, ApJS 54, 81 CrossRefGoogle Scholar
Pollack, J.B., Hollenbach, D., Beckwith, S., Simonelli, D.P., Roush, T., Fong, W., 1994, ApJ, 421, 615 Google Scholar
Sandford, S.A. and Allamandola, L.J., 1993, ApJ, 417, 815 Google Scholar