Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-25T16:28:10.810Z Has data issue: false hasContentIssue false

Boundary Layers in Cataclysmic Variables and Pre-Main-Sequence Stars

Published online by Cambridge University Press:  12 April 2016

Robert Popham*
Affiliation:
Harvard-Smithsonian Center for Astrophysics, MS 51, 60 Garden St., Cambridge, MA 02138

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The boundary layer region, where the accretion disk meets the accreting star, is crucial to understanding the spectra and evolution of accretion disk systems. Recent numerical modeling of the flow of the accreting material and radiation in the boundary layer has provided a better understanding of this region. I will describe the “standard” boundary layer structure predicted by the models for the case where the boundary layer is optically thick and geometrically thin in the vertical direction. Large variations in this structure can occur when the boundary layer becomes optically thin or geometrically thick. Boundary layer models have been applied to cataclysmic variables and accreting pre-main-sequence stars. I will discuss the boundary layer spectra predicted by the models and how well they agree with observations of these objects. The boundary layer also controls the transfer of angular momentum and energy between the disk and star. This can have important effects upon pre-main-sequence stellar evolution.

Type
Part 6. Disk-Star-Magnetosphere Interaction
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Basri, G., & Bertout, C. 1989, ApJ, 341, 340.CrossRefGoogle Scholar
Godon, P. 1996a, ApJ, 463, 674.CrossRefGoogle Scholar
Godon, P. 1996b, MNRAS, 279, 1071.CrossRefGoogle Scholar
Godon, P., Regev, O., Shaviv, G. 1995, MNRAS, 275, 1093.CrossRefGoogle Scholar
Hartigan, P., et al. 1991, ApJ, 382, 617.CrossRefGoogle Scholar
Hujeirat, A. 1995, A&A, 295, 268.Google Scholar
Jones, M.H., & Watson, M.G. 1992, MNRAS, 257, 633.CrossRefGoogle Scholar
Kley, W. 1989, A&A, 222, 141.Google Scholar
Kley, W. 1991, A&A, 247, 95.Google Scholar
Kley, W., & Lin, D.N.C. 1996, ApJ, 461, 933.CrossRefGoogle Scholar
Lioure, A., & Le Contel, O. 1994, A&A, 285, 185.Google Scholar
Long, K.S., Mauche, C.W., Raymond, J.C., Szkody, P., Mattei, J.A. 1996, ApJ, 469, 841.CrossRefGoogle Scholar
Mauche, C.W., Raymond, J.C., Mattei, J.A. 1993, ApJ, 446, 842.CrossRefGoogle Scholar
Mauche, C.W. 1996, in Cataclysmic Variables and Related Objects, eds. Evans, A., Wood, J.H. (Dordrecht: Kluwer).Google Scholar
Muchotrzeb, B., & Paczyński, B. 1982, Acta Astron., 32, 1.Google Scholar
Narayan, R., & Popham, R. 1993, Nature, 362, 820.CrossRefGoogle Scholar
Paczyński, B. 1991, ApJ, 370, 597.CrossRefGoogle Scholar
Paczyński, B., & Bisnovatyi-Kogan, B. 1981, Acta Astron., 31, 283.Google Scholar
Patterson, J. & Raymond, J.C. 1985, ApJ, 292, 535.CrossRefGoogle Scholar
Popham, R. 1996, ApJ, 467, 749.CrossRefGoogle Scholar
Popham, R., Kenyon, S., Hartmann, L., & Narayan, R. 1996, ApJ, in press.Google Scholar
Popham, R., & Narayan, R. 1991, ApJ, 370, 604.CrossRefGoogle Scholar
Popham, R., & Narayan, R. 1995, ApJ, 442, 337.CrossRefGoogle Scholar
Popham, R., Narayan, R., Hartmann, L., & Kenyon, S. 1993, ApJ, 415, L127.CrossRefGoogle Scholar
Regev, O., & Bertout, C. 1995, MNRAS, 272, 71.CrossRefGoogle Scholar
Shakura, N.I., & Sunyaev, R.A. 1973, A&A, 24, 337.Google Scholar
Wheatley, P.J., et al. 1996, A&A, 307, 137.Google Scholar