Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-25T03:30:18.011Z Has data issue: false hasContentIssue false

An EXOSAT Observation of Spectral Variability From the RS CVn Binary AR LAC

Published online by Cambridge University Press:  12 April 2016

N.E. White
Affiliation:
EXOSAT Observatory, ESTEC, Noordwijk, The Netherlands
R.A. Shaffer
Affiliation:
EXOSAT Observatory, ESTEC, Noordwijk, The Netherlands Present address: GSFC, Greenbelt, Maryland, USA
A.N. Parmar
Affiliation:
EXOSAT Observatory, ESTEC, Noordwijk, The Netherlands
K. Horne
Affiliation:
Space Telescope Science Institute, Baltimore, Maryland, USA
J.L. Culhane
Affiliation:
Mullard Space Science Laboratory, Holmbury St Mary, Surrey, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The eclipsing RS CVn system AR Lac (G2IV+K0IV) has been observed continuously for one 2 day binary cycle with the EXOSAT observatory. Below 1 keV a factor of two intensity modulation is seen with a flat bottomed minimum around the time of primary eclipse and a shallow dip preceeding primary eclipse. Above 1 keV, where only emission with temperatures > 107 K would be detected, no orbital modulation or eclipse is seen. This suggests that the > 20 million degree emission comes from a large region, comparable in size to the binary seperation. The modulation in the < 1 keV lightcurve has been modelled by x2 fitting to X-ray bright spots and by using maximum entropy deconvolution. The lower temperature emission is found to orginate in compact regions with a pressure and temperature similar to that of the flaring sun.

Type
5. Compact Binaries
Copyright
Copyright © Cambridge University Press 1990

References

Chambliss, C.R. 1976 P.A.S.P., 88, 762.CrossRefGoogle Scholar
Eaton, J., and Hall, D. 1979, Ap. J., 227, 907.CrossRefGoogle Scholar
Majer, P., Schmitt, J.H.M.M., Golub, L., Harnden, F.R. Jnr., and Rosner, R. 1986, Ap. J., 300, 360.CrossRefGoogle Scholar
Mewe, R., Gronenschild, E.H.B.M., and van den Oord, G.H.J. 1985, Astr. Ap. Suppl., 62, 197.Google Scholar
Mewe, R., Schrijver, C.J., Lemen, J.R., and Bentley, R.D., 1986, Adv. Space Res., Vol. 6, No. 8, 133.CrossRefGoogle Scholar
Rosner, R., Tucker, W. H., and Vaiana, G.S. 1978, Ap.J., 220, 643 (RTV).CrossRefGoogle Scholar
Serio, S., Peres, G., Vaiana, G.S., Golub, L., and Rosner, R. 1981, Ap. J., 243, 288.CrossRefGoogle Scholar
Skilling, J., and Bryan, R.K., 1984 M.N.R.A.S., 211, 111.CrossRefGoogle Scholar
Stern, R.A., Antiochos, S.K. and Harnden, F.R., 1986, Ap. J., 305, 417.CrossRefGoogle Scholar
Swank, J.H., White, N.E., Holt, S.S., and Becker, R.H. 1981, Ap.J., 246, 214.CrossRefGoogle Scholar
Vogt, S.S., and Penrod, G.D., 1983 P.A.S.P., 95, 565.CrossRefGoogle Scholar
Walter, F.M., Gibson, D.M., and and Basri, G.S. 1983, Ap.J., 267, 665 (WGB).CrossRefGoogle Scholar
Walter, F.M., Neff, J.E., Gibson, D.M., Linsky, J.L., Rodono, M., Gary, D.E., and Butler, C.J. 1987, Astr. Ap., 186, 241.Google Scholar
White, N.E., Culhane, J.L., Parmar, A.N., Kellett, B.J., Kahn, S., Oord, van den, and Kuijpers, J. 1986, Ap.J., 301, 262.CrossRefGoogle Scholar
White, N.E., and Peacock, A.P. 1988, in X-ray Astronomy with EXOSAT, ed. White, N.E. and Pallivicini, R., Memoria S.A.It, 59, in press.Google Scholar