Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T06:37:21.004Z Has data issue: false hasContentIssue false

6. Condensation and/or Metamorphism: Genesis of E- and L-Group Chondrites from Studies on Artificially Heated Primitive Congeners

Published online by Cambridge University Press:  12 April 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Primitive chondrites heated for one week under conditions reasonable for early solar system objects readily lose volatile/mobile trace elements, e.g., Ag, Bi, Cs, Ga, In, Se, Te, Tl and Zn. Trace element contents decrease by 10-100x progressively with temperature up to 1000° C; apparent activation energies calculated from these data suggest bonding differences between chondrites. Comparison of data for E3-6 chondrites and heated Abee (E4) indicates that volatile/mobile trace elements in E-group chondrites reflect metamorphic loss from a parent object; prior nebular cosmochemical fractionation modified non-volatile element contents. Apparently L3-6 chondrites escaped such open-system metamorphism. Information on nebular condensation process(es) may be gained from L-group compositional data; only nonvolatile elements in E-group chondrites should be used for this purpose, however.

Type
Part VI. Primitive Meteorites
Copyright
Copyright © A.H. Delsemme 1977

References

Anders, E. 1964, Space Sci. Rev. 3, 583.Google Scholar
Anders, E., Higuchi, H., Canapathy, R., and Morgan, J. W. 1976, Geochim. Cosmnchim. Acta, in press.Google Scholar
Binz, C. M., Kurimoto, R. K., and Lipschutz, M. E. 1974, Geochim. Cosmochim. Acta, 38, 1579.CrossRefGoogle Scholar
Binz, C. M., Ikramuddin, M., Rey, P., and Lipschutz, M. E. 1976, Geochim. Cosmochim. Acta, 40, 59.Google Scholar
Blander, M. 1975, Geochim. Cosmochim. Acta, 39, 1315.Google Scholar
Dodd, R. T. 1969, Geochim. Cosmochim. Acta, 33, 161.CrossRefGoogle Scholar
Fechtig, H., Centner, W., and Lammerzahl, P. 1963, Geochim. Cosmochim, Acta, 27, 1149.Google Scholar
Ikramuddin, M., Binz, C. M., and l.ipschutz, M. E. 1976a, Geochim. Cosmochim. Acta, 40, 133.Google Scholar
Ikramuddin, M., Binz, C. M., and l.ipschutz, M. E. 1976b, Geochim. Cosmochim. Acta, submitted.Google Scholar
Ikramuddin, M., Binz, C. M., and l.ipschutz, M. E. 1976c, Proc. Seventh Lunar Sci. Conf., in press.Google Scholar
Ikramuddin, M., and Lipschutz, M. E. 1975, Geochim. Cosmochim. Acta, 39, 363.CrossRefGoogle Scholar
Ikramuddin, M., Lipschutz, M. E., and Van Schmus, W. R. 1975, Nature, 253, 703.Google Scholar
Larimer, J. W. 1973, Geochim. Cosmochim. Acta, 37, 1603.CrossRefGoogle Scholar
Shaw, D. M., and Harmon, R. S. 1975, Meteoritics, 10, 253.Google Scholar
Van Schmus, W. R., and Wood, J. A. 1967, Geochim. Cosmochim. Acta, 31, 747.Google Scholar
Wasson, J. T. 1972, Rev. Geophys. Space Phys., 10, 711.Google Scholar
Wasson, J. T. 1974, Meteorites, Springer-Verlag.Google Scholar