Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-18T22:34:20.926Z Has data issue: false hasContentIssue false

4. On the Early Thermal History of Chondritic Asteroids Derived by 244-Plutonium Fission Track Thermometry

Published online by Cambridge University Press:  12 April 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cooling curves were determined for ordinary chondrites within the time- and temperature intervals from ~4.6 to ~4.1 × 109 years and ~1400 K to 300 K respectively. This was done by analyzing the 244-plutonium fission track record in whitlockite and adjacent mineral track detectors. The resulting cooling rates constrain the sizes of the parent asteroids to ~120 - 200 km in radius. These dimensions together with the fact that chondrites had never been molten, suggest lower 26Al/27Al initial ratios for ordinary chondritic than for Allende refractory materials.

Type
Part VI. Primitive Meteorites
Copyright
Copyright © A.H. Delsemme 1977

References

Alexander, E. C. Jr., Davis, P. K., and Lewis, R. S. 1972, Science, 175, 415.CrossRefGoogle Scholar
Buseck, P. R., and Goldstein, J. I. 1969, Bull. Geol. Soc. Am. 80, 2141.CrossRefGoogle Scholar
Cantelaube, Y., Maurette, M., and Pellas, P. 1967, in Radioactive Dating and meth of Low-Level Counting, (I.A.E.A. Vienna), p. 215.Google Scholar
Dodd, R. T. 1969, Geochim. Cosmochim. Acta, 33, 161.CrossRefGoogle Scholar
Dodd, R. T., Grover, J. E., and Brown, G. E. 1975, Geochim. Cosmochim, Acta, 39, 1585.CrossRefGoogle Scholar
Fleischer, R. L., Price, P. B., and Walker, R. M. 1965, J. Geophys. Res. 70, 2703 CrossRefGoogle Scholar
Fricker, P. E., Goldstein, J. I., and Summers, A. L. 1970, Geochim. Cosmochim. Acta, 34, 475.CrossRefGoogle Scholar
Fredriksson, K., and Mason, B. 1967, Geochim. Cosmochim. Acta, 31, 1705.CrossRefGoogle Scholar
Goldstein, J. I., and Doan, A. S. Jr., 1972, Geochim. Cosmochim. Acta, 36, 51.CrossRefGoogle Scholar
Goldstein, J. I., and Ogilvie, R. E. 1965, Geochim. Cosmochim. Acta, 29, 895.CrossRefGoogle Scholar
Goldstein, J. I., and Short, J. M. 1967a, Geochim. Cosmochim. Acta, 31, 1001.CrossRefGoogle Scholar
Goldstein, J. I., and Short, J. M. 1967b, Geochim. Cosmochim. Acta, 31, 1733.CrossRefGoogle Scholar
Grossman, L., and Larimer, J. W. 1974, Rev. Geophys. Space Phys. 12, 71.CrossRefGoogle Scholar
Hemdon, J. M., and Rowe, M. W. 1975, Nature, 244, 40.Google Scholar
Larimer, J. W. 1973, Geochim. Cosmochim. Acta, 37, 1603.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. 1976, Geophys. Res. Letters. 3, 109.CrossRefGoogle Scholar
Lewis, R. S. 1975, Geochim. Cosmochim. Acta, 39, 417.CrossRefGoogle Scholar
Malezieux, J. M. 1974, Thesis, Paris VI University.Google Scholar
Naeser, C. W., and Forbes, R. B. 1976, Eos, 57, 552.Google Scholar
Onuma, N., Clayton, R. N., and Mayeda, T. K. 1972, Geochim. Cosmochim. Acta, 36, 157.CrossRefGoogle Scholar
Pellas, P., and Storzer, D. 1975a, Meteoritics 10, 471.Google Scholar
Pellas, P., and Storzer, D. 1975b, C. R. Acad. Sci., 280 D, 225.Google Scholar
Powell, B. N. 1969, Geochim. Cosmochim. Acta, 33, 789.CrossRefGoogle Scholar
Storzer, D. 1970, Earth Planet. Sci. Lett., 8, 55.CrossRefGoogle Scholar
Van Schmus, W. R. 1969, Earth Sci. Rev. 5, 145.CrossRefGoogle Scholar
Van Schmus, W. R., and Wood, J. A. 1967, Geochim. Cosmochim. Acta, 31, 747.CrossRefGoogle Scholar
Wasserburg, G. J.,Huneke, J. C., and Burnett, D. S. 1969, J. Geophys. Res. 74, 4221.CrossRefGoogle Scholar
Wood, J. A. 1964, Icarus, 3, 429.CrossRefGoogle Scholar
Wood, J. A. 1967, Icarus, 6, 1.CrossRefGoogle Scholar