Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T05:16:35.993Z Has data issue: false hasContentIssue false

2.2.1 Lunar Microcraters and Interplanetary Dust Fluxes

Published online by Cambridge University Press:  12 April 2016

Jack B. Hartung*
Affiliation:
Department of Earth and Space Sciences, State university of New York at Stony Brook, Stony Brook, New York 11794, U. S. A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Conflicting data for depth-to-diameter ratios for lunar microcrater pits do not permit firm conclusions for distribution of meteoroid densities. The majority of meteoroids have equidimensional shapes. Meteoritic metal spherules have been detected in a small fraction of impact pit glasses, but contribution of meteoroidal material to most pit glasses is small to negligible. Impact pits less than 0.1 microns in diameter (impacting particle mass ~ 10−16 grams) have been observed. Size distributions -9 for microcrater pits less than 50 microns in diameter (particle mass < 10−9 grams) measured on different, samples differ significantly. An inflection in the cumulative size distribution curve at a diameter between 1 and 10 microns (particle masses between 10−14 and 10−11 grams) appears real, supporting the idea of a two-component model for the interplanetary dust. Data for the arrival direction of meteoroids at the moon are inconclusive.

Type
2 In Situ Measurements of Interplanetary Dust
Copyright
Copyright © Springer-Verlag 1976

References

Ashworth, D.G. and McDonnell, J.A.M. (1973) Lunar surface microerosion related to interplanetary dust particle distributions. In Space ResearchXIII, pp. 10711083. Akademie-Verlag, Berlin.Google Scholar
Ashworth, D.G. and McDonnell, J.A.M. (1974) Micrometeorite influx rates on the lunar surface deduced from revised estimates of the solar wind sputter rate and lunar surface crater statistics. In Space ResearchXIV, pp. 723729. Akademie-Verlag, Berlin.Google Scholar
Barber, D.J., Cowsik, R., Hutcheon, I.D., Price, P.B., and Rajan, R.S. (1971) Solar flares, the lunar surface, and gas-rich meteorites. Proc. Lunar Sci. Conf. 2nd, p. 27052714.Google Scholar
Behrmann, C., Crozaz, G., Drozd, R., Hohenberg, C., Ralston, C., Walker, R., and Yuhas, D. (1973) Cosmic-ray exposure history of North Ray and South Ray material. Proc. Lunar Sci. Conf. 4th, p. 19571974.Google Scholar
Bhandari, N., Bhat, S., Lai, D., Rajagopalan, G., Tamhane, A.S., and Venkatavaradan, V.S. (1971) High resolution time averaged (millions of years) energy spectrum and chemical composition of iron-group cosmic ray nuclei at 1 A.U. based on fossil tracks in Apollo samples. Proc. Lunar Sci. Conf. 2nd, p. 26112619.Google Scholar
Blanford, G.E., Fruland, R.M., McKay, D.S., and Morrison, D.A. (1974) Lunar surface phenomena: Solar flare track gradients, microcraters, and accretionary particles. Proc. Lunar Sci. Conf. 5th, p. 25012526.Google Scholar
Blanford, G.E., Fruland, R.M., and Morrison, D.A. (1975) Long term differential energy spectrum for solar flare iron-group particles. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
Bloch, M.R., Fechtig, H., Gentner, W., Neukum, G., and Schneider, E. (1971) Meteorite impact craters, crater simulations, and the meteoroid flux in the early solar system. Proc. Lunar Sci. Conf. 2nd, p. 26392652.Google Scholar
Brownlee, D.E., Hörz, F., Vedder, J.F., Gault, D.E., and Hartung, J.B. (1973) Some physical parameters of micrometeoroids. Proc. Lunar Sci. Conf. 4th, p. 31973212.Google Scholar
Brownlee, D.E., Hörz, F., Hartung, J.B., and Gault, D.E. (1975) Density, chemistry, and size distribution of interplanetary dust. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
Chao, E.C.T., Borman, J.A., Minkin, J.A., James, O.B., and Desborough, G.A. (1970). Lunar glasses of impact origin: Physical and chemical characteristics and geologic implications. J. Geophys. Res. 75, 74457479.Google Scholar
Crozaz, G. and Walker, R. (1971) Solar particle tracks in glass from the Surveyor III spacecraft. Science 171, 12371239.CrossRefGoogle Scholar
Crozaz, G., Haack, U., Hair, M., Maurette, M., Walker, R., and Woolum, D. (1970) Nuclear track studies of ancient solar radiations and dynamic lunar surface processes. Proc. Apollo 11 Lunar Sci. Conf. p. 20512080.Google Scholar
Crozaz, G., Walker, R., and Woolum, D. (1971) Nuclear track studies of dynamic surface processes on the moon and the constancy of solar activity. Proc. Lunar Sci. Conf. 2nd, p. 25432558.Google Scholar
Crozaz, G., Drozd, R., Hohenberg, C., Morgan, C., Ralston, C., Walker, R., and Yuhas, D. (1974) Lunar surface dynamics: Some general conclusions and new results from Spollo 16 and 17. Proc. Lunar Sci. Conf. 5th, p. 24752499.Google Scholar
Durrani, S.A., Khan, H.A., Bull, R.K., Dorling, G.W., and Fremlin, J.H. (1974) Charged-particle and micrometeorite impacts on the lunar surface. Proc. Lunar Sci. Conf. 5th, p. 25432560.Google Scholar
Fechtig, H., Hartung, J.B., Nagel, K., and Neukum, G. (1974) Lunar microcrater studies, derived meteoroid fluxes, and comparison with satellite-borne experiments. Proc. Lunar Sci. Conf. 5th, p. 24632474.Google Scholar
Fechtig, H., Gentner, W., Hartung, J.B., Nagel, K., Neukum, G., Schneider, E., and Storzer, D. (1975) Microcraters on lunar samples. Proc. Soviet-American Conf. on Cosmochemistry of the Moon and the Planets, June 1974, in press.Google Scholar
Finkel, R.C., Arnold, J.R., Imamura, M., Reedy, R. C., Fruchter, J.S., Loosli, H.H., Evans, J.C., Delany, A.C., and Shedlovsky, J.P. (1971) Depth variations of cosmogenic nuclides in a lunar surface rock and lunar soil. Proc. Lunar Sci. Conf. 2nd, p. 17731789.Google Scholar
Fleischer, R.L., Price, P.B., Walker, R.M. and Maurette, M. (1967a) Origins of fossil charged particle tracks in meteorites. J. Geophys. Res. 72, 331353.Google Scholar
Fleischer, R.L., Price, P.B., Walker, R.M., Maurette, M., and Morgan, G. (1967b) Tracks of heavy primary cosmic rays in meteorites. J. Geophys. Res. 72, 355366.Google Scholar
Fleischer, R.L., Haines, E.L., Hart, H.R. Jr., Woods, R.T., and Comstock, G.M. (1970) The particle track record of the Sea of Tranquility. Proc. Apollo 11 Lunar Sci. Conf. p. 21032120.Google Scholar
Fleischer, R.L., Hart, H.R. Jr., Comstock, G.M., and Evwaraye, A.O. (1971a) The particle track record of the Ocean of Storms. Proc. Lunar Sci. Conf. 2nd, p. 25592568.Google Scholar
Fleischer, R.L., Hart, H.R. Jr., and Comstock, G.M. (1971b) Very heavy solar cosmic rays: Energy spectrum and implications for lunar erosion. Science 171, 12402342.Google Scholar
Gault, D.E. (1970) Saturation and equilibrium conditions for impact cratering on the lunar surface: Criteria and implications. Radio Sci. 5, 273291.Google Scholar
Gault, D.E. (1973) Displaced mass, depth, diameter and effects of oblique trajectories for impact craters formed in dense crystalline rocks. The Moon 6, 3244.Google Scholar
Gault, D.E., Hörz, F., and Hartung, J.B. (1972) Effects of microcratering on the lunar surface. Proc. Lunar Sci. Conf. 3rd, p. 27132734.Google Scholar
Gibbons, R.V., Morris, R.V., Hörz, F., and Thompson, T.D. (1975) Petrographie and ferromagnetic resonance studies of experimentally shocked regolith analogues. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
Hartung, J.B., Hörz, F., McKay, D.S., and Baiamonte, F.L. (1972a) Surface features on glass spherules from the Luna 16 sample. The Moon 5, 436446.Google Scholar
Hartung, J.B., Hörz, F., and Gault, D.E. (1972b) Lunar microcraters and interplanetary dust. Proc. Lunar Sci. Conf. 3rd, p. 27352753.Google Scholar
Hartung, J.B., Hörz, F., Aitken, F.K., Gault, D.E., and Brownlee, D.E. (1973) The development of microcrater populations on lunar rocks. Proc. Lunar Sci. Conf. 4th, p. 32133234.Google Scholar
Hartung, J.B. and Storzer, D. (1974) Lunar microcraters and their solar flare track record. Proc. Lunar Sci. Conf. 5th, p. 25272541.Google Scholar
Hartung, J.B., Hodges, F., Hörz, F., and Storzer, D. (1975) Microcrater investigations on lunar rock 12002. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
Hörz, F., Hartung, J.B., and Gault, D.E. (1971) Micrometeorite craters on lunar rock surfaces. J. Geophys. Res. 76, 57705798.Google Scholar
Hörz, F., Brownlee, D.E., Fechtig, H., Hartung, J.B., Morrison, D.A., Neukum, G., Schneider, E., Vedder, J.F., and Gault, D.E. (1975a) Lunar microcraters: Implications for the micrometeoroid complex. Planet. Space Sci. 23, 151172.CrossRefGoogle Scholar
Hörz, F., Morrison, D.A., Gault, D.E., Oberbec, V.R., Quaide, W.L., Vedder, J.F., Brownlee, D.E., and Hartung, J.B. (1975b) The micrometeoroid complex and evolution of the lunar regolith. Proc. Soviet-American Conf. on Cosmochemistry of the Moon and Planets, June 1974, in press.Google Scholar
Hörz, F., Gibbons, V.R., Gault, D.E., Hartung, J.B., and Brownlee, D.E. (1975c) Some correlations of rock exposure ages and regolith dynamics. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
Housley, R.M., Grant, R.W., Muir, A.H. Jr., Blander, M., and Abdel-Gawad, M. (1971) Möss-bauer studies of Apollo 12 samples. Proc. Lunar Sci. Conf. 2nd, p. 21252136.Google Scholar
Hutcheon, I.D. (1975) Microcraters in oriented vugs-evidence for anisotropy in the micrometeoroid flux (abstract). In Lunar Science VI, p. 420422. The Lunar Science Institute, Houston.Google Scholar
Hutcheon, I.D., MacDougall, D., and Price, P.B. (1974) Improved determination of the long-term average Fe spectrum from ~ 1 to ~ 460 MeV/amu. Proc. Lunar Sci. Conf. 5th, p. 25612576.Google Scholar
Keith, J.E. and Clark, R.S. (1974) The saturated activity of 26A1 in lunar samples as a function of chemical composition and the exposure ages of some lunar samples. Proc. Lunar Sci. Conf. 5th, p. 21052119.Google Scholar
Lal, D. (1969) Recent advances in the study of fossil tracks in meteorites due to heavy nuclei of the cosmic radiation. Space Sci. Rev. 9, 623650.CrossRefGoogle Scholar
Lal, D., MacDougall, D., Wilkening, L., and Arrhenius, G. (1970) Mixing of the lunar regolith and cosmic ray spectra, new evidence from fossil particle-track studies. Proc. Apollo 11 Lunar Sci. Conf. p. 22952303.Google Scholar
Marti, K. (1967a) Mass-spectrometric detection of cosmic-ray-produced K81 in meteorites and the possibility of Kr-Kr dating. Phys. Rev. Lett. 18, 264266.Google Scholar
McDonnell, J.A.M. and Ashworth, D.G. (1972) Erosion phenomena on the lunar surface and meteorites. In Space ResearchXII, p. 333347. Akademie-Verlag, Berlin.Google Scholar
McDonnell, J.A.M. and Flavill, R.P. (1974) Solar wind sputtering on the lunar surface: Equilibrium crater densities related to past and present microparticle influx rates. Proc. Lunar Sci. Conf. 5th, p. 24412449.Google Scholar
McDonnell, J.A.M. and Carey, W.C. (1975) Solar wind sputter erosion of microcrater populations on the lunar surface. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
McDonnell, J.A.M., Ashworth, D.G.,’ Flavill, R.P., Bateman, D.C., and Jennison, R.C. (1974) Microparticle flux distributions and erosion parameters-Temporal flux variations deduced. 18th COSPAR Meeting, Sao Paulo, Brazil. To be published in Planetary and Space Research.Google Scholar
Morrison, D.A. and Zinner, E. (1975) Studies of solar flares and impact craters in partially protected crystals. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
Morrison, D.A., McKay, D.S., Moore, H.J., and Heiken, G.H. (1972) Microcraters on lunar rocks. Proc. Lunar Sci. Conf. 3rd, p. 27672791.Google Scholar
Morrison, D.A., McKay, D.S., Fruland, R.M., and Moore, H.V. (1973) Microcraters on Apollo 15 and 16 rocks. Proc. Lunar Sci. Conf. 4th, p. 32353253.Google Scholar
Nagel, K., Neukum, G., Eichhorn, G., Fechtig, H., Müller, O., and Schneider, E. (1975) Dependencies of microcrater formation on impact parameters. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
Neukum, G., Mehl, A., Fechtig, H., and Zähringer, J. (1970) Impact phenomena of micro-meteorites on lunar surface materials. Earth Planet. Sci. Lett. 8, 3135.Google Scholar
Neukum, G., Schneider, E., Mehl, A., Storzer, D., Wagner, G.A., Fechtig, H., and Bloch, M.R. (1972) Lunar craters and exposure ages derived from crater statistics and solar flare tracks. Proc. Lunar Sci. Conf. 3rd, p. 27932810.Google Scholar
Neukum, G., Hörz, F., Morrison, D.A., and Hartung, J.B. (1973) Crater populations on lunar rocks. Proc. Lunar Sci. Conf. 4th, p. 32553276.Google Scholar
Rancitelli, L.A., Perkins, R.W., Felix, W.D., and Wogman, N.A. (1971) Erosion and mixing of the lunar surface from cosmogenic and primordial radionuclide measurements in Apollo 12 lunar samples. Proc. Lunar Sci. Conf. 2nd, p. 17571772.Google Scholar
Schneider, E. and Hörz, F. (1974) Microcrater populations on Apollo 17 rocks. Icarus 22, 459473.Google Scholar
Schneider, E., Storzer, D., Mehl, B., Hartung, J.B., Fechtig, H., and Gentner, W. (1973) Microcraters on Apollo 15 and 16 samples and corresponding dust fluxes. Proc. Lunar Sci. Conf. 4th, p. 32773290.Google Scholar
Shoemaker, E.M. (1971) Origin of fragmental debris on the lunar surface and the history of bombardment of the moon. Instituto de Investigaciones Geológicas de la Diputacion Provincial, v. XXV, Universidad de Barcelona.Google Scholar
Smith, D., Adams, N.G., and Khan, H.A. (1974) Flux and composition of micrometeoroids in the diameter range l-10µm. Nature 252, 101106.Google Scholar
Storzer, D. and Wagner, G.A. (1969) Correction of thermally lowered fission track ages of tektites. Earth Planet. Sci. Lett. 5, 463468.Google Scholar
Wahlen, M., Honda, M., Imamura, M., Fruchter, J.S., Finkel, R.C., Kohl, C.P., Arnold, J.R., and Reedy, R.C. (1972). Cosmogenic nuclides in football-sized rocks. Proc. Lunar Sci. Conf. 3rd, p. 17191732.Google Scholar
Walker, R. and Yuhas, D. (1973) Cosmic ray track production rates in lunar materials. Proc. Lunar Sci. Conf. 4th, p. 23792389.Google Scholar
Zook, H.A. and Berg, O.E. (1975) A source for hypervelocity cosmic dust particles. Planet. Space Sci. 23(1), 183203.Google Scholar