Skip to main content Accessibility help

Ventilator Bundle Compliance and Risk of Ventilator-Associated Events

  • Bryan D. Harris (a1), Gale A. Thomas (a1), Matthew H. Greene (a1), Steven S. Spires (a1) and Thomas R. Talbot (a1) (a2)...



Ventilator bundles encompass practices that reduce the risk of ventilator complications, including ventilator-associated pneumonia. The impact of ventilator bundles on the risk of developing ventilator-associated events (VAEs) is unknown. We sought to determine whether decreased compliance to the ventilator bundle increases the risk for VAE development.


Nested case-control study.


This study was conducted at 6 adult intensive care units at an academic tertiary-care center in Tennessee.


In total, 273 patients with VAEs were randomly matched in a 1:4 ratio to controls by mechanical ventilation duration and ICU type.


Controls were selected from the primary study population at risk for a VAE after being mechanically ventilated for the same number of days as a specified case. Using conditional logistic regression analysis, overall cumulative compliance, and compliance with individual components of the bundle in the 3 and 7 days prior to VAE development (or the control match day) were examined.


Overall bundle compliance at 3 days (odds ratio [OR], 1.15; P=.34) and 7 days prior to VAE diagnosis (OR, 0.96; P=.83) were not associated with VAE development. This finding did not change when limiting the outcome to infection-related ventilator-associated complications (IVACs) and after adjusting for age and gender. In the examination of compliance with specific bundle components increased compliance with chlorhexidine oral care was associated with increased risk of VAE development in all analyses.


Ventilator bundle compliance was not associated with a reduced risk for VAEs. Higher compliance with chlorhexidine oral care was associated with a greater risk for VAE development.

Infect Control Hosp Epidemiol 2018;39:637–643


Corresponding author

Address correspondence to Bryan D. Harris, MD, MPH, Vanderbilt University Medical Center, A-2200 MCN, 1161 21st Avenue South, Nashville, TN 37232 (


Hide All

PREVIOUS PRESENTATION. These data were presented in part at the Society for Healthcare Epidemiology of America Annual Meeting on May 19, 2016, in Atlanta, Georgia (abstract no. 8116).



Hide All
1. Wunsch, H, Linde-Zwirble, WT, Angus, DC, Hartman, ME, Milbrandt, EB, Kahn, JM. The epidemiology of mechanical ventilation use in the United States. Crit Care Med 2010;38:19471953.
2. Esteban, A, Anzueto, A, Frutos, F, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 2002;287:345355.
3. Kahn, JM, Goss, CH, Heagerty, PJ, Kramer, AA, O’Brien, CR, Rubenfeld, GD. Hospital volume and the outcomes of mechanical ventilation. N Engl J Med 2006;355:4150.
4. Rubenfeld, GD, Caldwell, E, Peabody, E, et al. Incidence and outcomes of acute lung injury. N Engl J Med 2005;353:16851693.
5. Mizgerd, JP. Acute lower respiratory tract infection. N Engl J Med 2008;358:716727.
6. Heyland, DK, Cook, DJ, Griffith, L, Keenan, SP, Brun-Buisson, C. The attributable morbidity and mortality of ventilator-associated pneumonia in the critically ill patient. The Canadian Critical Trials Group. Am J Respir Crit Care Med 1999;159:12491256.
7. Bekaert, M, Timsit, JF, Vansteelandt, S, et al. Attributable mortality of ventilator-associated pneumonia: a reappraisal using causal analysis. Am J Respir Crit Care Med 2011;184:11331139.
8. Klompas, M. The paradox of ventilator-associated pneumonia prevention measures. Crit Care 2009;13:315.
9. Klompas, M. Eight initiatives that misleadingly lower ventilator-associated pneumonia rates. Am J Infect Control 2012;40:408410.
10. Klompas, M, Platt, R. Ventilator-associated pneumonia—the wrong quality measure for benchmarking. Ann Intern Med 2007;147:803805.
11. Muscedere, J, Rewa, O, McKechnie, K, Jiang, X, Laporta, D, Heyland, DK. Subglottic secretion drainage for the prevention of ventilator-associated pneumonia: a systematic review and meta-analysis. Crit Care Med 2011;39:19851991.
12. Zilberberg, MD, Shorr, AF, Kollef, MH. Implementing quality improvements in the intensive care unit: ventilator bundle as an example. Crit Care Med 2009;37:305309.
13. Berenholtz, SM, Pham, JC, Thompson, DA, et al. Collaborative cohort study of an intervention to reduce ventilator-associated pneumonia in the intensive care unit. Infect Control Hosp Epidemiol 2011;32:305314.
14. Lawrence, P, Fulbrook, P. The ventilator care bundle and its impact on ventilator-associated pneumonia: a review of the evidence. Nurs Crit Care 2011;16:222234.
15. Ferreira, CR, de Souza, DF, Cunha, TM, et al. The effectiveness of a bundle in the prevention of ventilator-associated pneumonia. Braz J Infect Dis 2016;20:267271.
16. Sachetti, A, Rech, V, Dias, AS, Fontana, C, Barbosa Gda, L, Schlichting, D. Adherence to the items in a bundle for the prevention of ventilator-associated pneumonia. Rev Bras Ter Intensiva 2014;26:355359.
17. Sen, S, Johnston, C, Greenhalgh, D, Palmieri, T. Ventilator-associated pneumonia prevention bundle significantly reduces the risk of ventilator-associated pneumonia in critically ill burn patients. J Burn Care Res 2016;37:166171.
18. Al-Thaqafy, MS, El-Saed, A, Arabi, YM, Balkhy, HH. Association of compliance of ventilator bundle with incidence of ventilator-associated pneumonia and ventilator utilization among critical patients over 4 years. Ann Thorac Med 2014;9:221226.
19. Sulis, CA, Walkey, AJ, Abadi, Y, Campbell Reardon, C, Joyce-Brady, M. Outcomes of a ventilator-associated pneumonia bundle on rates of ventilator-associated pneumonia and other health care-associated infections in a long-term acute care hospital setting. Am J Infect Control 2014;42:536538.
20. Eom, JS, Lee, MS, Chun, HK, et al. The impact of a ventilator bundle on preventing ventilator-associated pneumonia: a multicenter study. Am J Infect Control 2014;42:3437.
21. Lim, KP, Kuo, SW, Ko, WJ, et al. Efficacy of ventilator-associated pneumonia care bundle for prevention of ventilator-associated pneumonia in the surgical intensive care units of a medical center. J Microbiol Immunol Infect 2015;48:316321.
22. Bukhari, SZ, Hussain, WM, Banjar, AA, Fatani, MI, Karima, TM, Ashshi, AM. Application of ventilator care bundle and its impact on ventilator associated pneumonia incidence rate in the adult intensive care unit. Saudi Med J 2012;33:278283.
23. Pogorzelska, M, Stone, PW, Furuya, EY, et al. Impact of the ventilator bundle on ventilator-associated pneumonia in intensive care unit. Int J Qual Health Care 2011;23:538544.
24. Morris, AC, Hay, AW, Swann, DG, et al. Reducing ventilator-associated pneumonia in intensive care: impact of implementing a care bundle. Crit Care Med 2011;39:22182224.
25. Bird, D, Zambuto, A, O’Donnell, C, et al. Adherence to ventilator-associated pneumonia bundle and incidence of ventilator-associated pneumonia in the surgical intensive care unit. Arch Surg 2010;145:465470.
26. Al-Tawfiq, JA, Abed, MS. Decreasing ventilator-associated pneumonia in adult intensive care units using the Institute for Healthcare Improvement bundle. Am J Infect Control 2010;38:552556.
27. Blamoun, J, Alfakir, M, Rella, ME, et al. Efficacy of an expanded ventilator bundle for the reduction of ventilator-associated pneumonia in the medical intensive care unit. Am J Infect Control 2009;37:172175.
28. Talbot, TR, Carr, D, Parmley, CL, et al. Sustained reduction of ventilator-associated pneumonia rates using real-time course correction with a ventilator bundle compliance dashboard. Infect Control Hosp Epidemiol 2015;36:12611267.
29. Raoof, S, Baumann, MH, Critical Care Societies Collaborative cotlotAAoC-CNtACoCPtATS, the Society of Critical Care M. Ventilator-associated events: the new definition. Am J Crit Care 2014;23:79.
30. Klompas, M. Ventilator-associated events surveillance: a patient safety opportunity. Curr Opin Crit Care 2013;19:424431.
31. Klompas, M, Khan, Y, Kleinman, K, et al. Multicenter evaluation of a novel surveillance paradigm for complications of mechanical ventilation. PLoS One 2011;6:e18062.
32. Price, R, MacLennan, G, Glen, J, Su, DC. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ 2014;348:g2197.
33. Klompas, M, Li, L, Kleinman, K, Szumita, PM, Massaro, AF. Associations between ventilator bundle components and outcomes. JAMA Intern Med 2016;176:12771283.
34. Enwere, EN, Elofson, KA, Forbes, RC, Gerlach, AT. Impact of chlorhexidine mouthwash prophylaxis on probable ventilator-associated pneumonia in a surgical intensive care unit. Int J Crit Illn Inj Sci 2016;6:38.
35. Klompas, M. Ventilator-associated conditions versus ventilator-associated pneumonia: different by design. Curr Infect Dis Rep 2014;16:430.
36. Lewis, SC, Li, L, Murphy, MV, Klompas, M, Epicenters CDCP. Risk factors for ventilator-associated events: a case-control multivariable analysis. Crit Care Med 2014;42:18391848.
Type Description Title
Supplementary materials

Harris et al. supplementary material
Tables S1-S2

 Word (17 KB)
17 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed