Skip to main content Accessibility help
×
Home

Utilization of Electronic Health Record Events to Conduct a Tuberculosis Contact Investigation in a High-Risk Oncology Unit

  • Shauna C. Usiak (a1), Fabian A. Romero (a1), Patrice Schwegman (a2), Violet Fitzpatrick (a3), MaryAnn Connor (a4), Janet Eagan (a1), Arthur E. Brown (a3) and Mini Kamboj (a1)...

Abstract

OBJECTIVE

To describe the utilization of electronic medical data resources, including health records and nursing scheduling resources, to conduct a tuberculosis (TB) exposure investigation in a high-risk oncology unit.

SETTING

A 42-bed inpatient unit with a mix of surgical and medical patients at a large tertiary-care cancer center in New York City.

PARTICIPANTS

High-risk subjects and coworkers exposed to a healthcare worker (HCW) with cavitary smear positive lung TB.

RESULTS

During the 3-month exposure period, 270 patients were admitted to the unit; 137 of these (50.7%) received direct care from the index case HCW. Host immune status and intensity of exposure were used to establish criteria for postexposure testing, and 63 patients (45%) met these criteria for first-tier postexposure testing. No cases of active TB occurred. Among coworkers, 146 had significant exposure (ie, >8 hours cumulative). In the 22-month follow-up period after the exposure, no purified protein derivative or interferon gamma release assay conversions or active cases of TB occurred among exposed HCWs or patients.

CONCLUSIONS

Electronic medical records and employee scheduling systems are useful resources to conduct otherwise labor-intensive contact investigations. Despite the high-risk features of our index case, a highly vulnerable immunocompromised patient population, and extended proximity to coworkers, we did not find any evidence of transmission of active or latent tuberculosis infection among exposed individuals.

Infect Control Hosp Epidemiol 2017;38:1235–1239

Copyright

Corresponding author

Address correspondence to Fabian A. Romero, 4922 Lasalle Rd, Hyattsville, MD, 20782 (romero.fabian.md@gmail.com).

Footnotes

Hide All
a

Authors with equal contribution.

Footnotes

References

Hide All
1. Devadatta, S, Bhatia, AL, Andrews, RH, et al. Response of patients infected with isoniazid-resistant tubercle bacilli to treatment with isoniazid plus PAS or isoniazid alone. Bull World Health Organ 1961;25:807829.
2. Ramakrishnan, CV, Andrews, RH, Devadatta, S, et al. Prevalence and early attack rate of tuberculosis among close family contacts of tuberculous patients in South India under domiciliary treatment with isoniazid plus PAS or isoniazid alone. Bull World Health Organ 1961;26:361407.
3. Harris, TG, Sullivan Meissner, J, Proops, D. Delay in diagnosis leading to nosocomial transmission of tuberculosis at a New York City health care facility. Am J Infect Control 2013;41:155160.
4. Malone, JL, Ijaz, K, Lambert, L, et al. Investigation of healthcare-associated transmission of Mycobacterium tuberculosis among patients with malignancies at three hospitals and at a residential facility. Cancer 2004;101:27132721.
5. Greenaway, C, Menzies, D, Fanning, A, et al. Delay in diagnosis among hospitalized patients with active tuberculosis—predictors and outcomes. Am J Respir Crit Care Med 2002;165:927933.
6. Jensen, PA, Lambert, LA, Iademarco, MF, Ridzon, R. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings, 2005. MMWR Recomm Rep 2005;54:1141.
7. Bureau of Tuberculosis Control Annual Summary. 2014. New York City Department of Health and Mental Hygiene website. https://www1.nyc.gov/assets/doh/downloads/pdf/tb/tb2014.pdf. Published 2015. Accessed July 14, 2017.
8. Driver, CR, Stricof, RL, Granville, K, et al. Tuberculosis in health care workers during declining tuberculosis incidence in New York State. Am J Infect Control 2005;33:519526.
9. Nivin, B, Nicholas, P, Gayer, M, Frieden, TR, Fujiwara, PI. A continuing outbreak of multidrug-resistant tuberculosis, with transmission in a hospital nursery. Clin Infect Dis 1998;26:303307.
10. Rogers, EF. Epidemiology of an outbreak of tuberculosis among school children. Public Health Rept 1962;77:401409.
11. Sepkowitz, KA. How contagious is tuberculosis? Clin Infect Dis 1996;23:954962.
12. Yates, TA, Khan, PY, Knight, GM, et al. The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infect Dis 2016;16:227238.
13. Kim, HR, Hwang, SS, Ro, YK, et al. Solid-organ malignancy as a risk factor for tuberculosis. Respirology 2008;13:413419.
14. Kamboj, M, Sepkowitz, KA. The risk of tuberculosis in patients with cancer. Clin Infect Dis 2006;42:15921595.
15. Kaplan, MH, Armstrong, D, Rosen, P. Tuberculosis complicating neoplastic disease. A review of 201 cases. Cancer 1974;33:850858.
16. Richeldi, L, Losi, M, D’Amico, R, et al. Performance of tests for latent tuberculosis in different groups of immunocompromised patients. Chest 2009;136:198204.
17. Redelman-Sidi, G, Sepkowitz, KA. IFN-gamma release assays in the diagnosis of latent tuberculosis infection among immunocompromised adults. Am J Respir Crit Care Med 2013;188:422431.
18. Arguello-Perez, E EC, Schneider, WJ, Del Castillo, MC, et al. Latent tuberculosis infection (LTBI) among healthcare workers (HCWs): 10 years of experience at Memorial Sloan Kettering Cancer Center (MSK). Infectious Disease Week (ID Week), San Diego, CA, October 7–11, 2015; poster 329.
19. National Tuberculosis Controllers A, Centers for Disease C, Prevention. Guidelines for the investigation of contacts of persons with infectious tuberculosis. Recommendations from the National Tuberculosis Controllers Association and CDC. MMWR Recomm Rep 2005;54:147.
20. Tuberculosis and air travel. Guidelines for prevention and control. Third Edition. WHO. http://www.who.int/tb/publications/2008/WHO_HTM_TB_2008.399_eng.pdf. Published 2008. Accessed February 4, 2017.

Related content

Powered by UNSILO

Utilization of Electronic Health Record Events to Conduct a Tuberculosis Contact Investigation in a High-Risk Oncology Unit

  • Shauna C. Usiak (a1), Fabian A. Romero (a1), Patrice Schwegman (a2), Violet Fitzpatrick (a3), MaryAnn Connor (a4), Janet Eagan (a1), Arthur E. Brown (a3) and Mini Kamboj (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.