Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T23:02:27.215Z Has data issue: false hasContentIssue false

Therapy of Bacterial Meningitis: Principles and Practice

Published online by Cambridge University Press:  21 June 2016

Allan R. Tunkel
Affiliation:
Division of Infectious Diseases, University of Virginia School of Medicine, Charlottesville, Virginia
W. Michael Scheld*
Affiliation:
Division of Infectious Diseases, University of Virginia School of Medicine, Charlottesville, Virginia
*
Division of Infectious Diseases, Box 385, University of Virginia Health Sciences Center, Charlottesville, VA 22908

Extract

Since the advent of antimicrobial therapy, bacterial meningitis has changed from a disease with an almost uniformly fatal course to one in which the majority of patients now survive. The mortality rates for the three most common etiologic agents in bacterial meningitis, Hemophilus influenzae, Neisseria meningitidis and Streptococcus pneumoniae, were 6%, 10.3%, and 26.3%, respectively, in the United States from 1978 to 1981. Morbidity, however, primarily in the form of neurologic sequelae, continues to be a problem in children and adults surviving bacterial meningitis. This article focuses on the principles and practice of therapy in bacterial meningitis, highlighting the experience with new antimicrobial agents and the utility of adjunctive therapy.

Type
Special Sections
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schlech, WF III, Ward, JI, Band, JD, Hightower, A, Fraser, DW, Broome, CV. Bacterial meningitis in the United States, 1978 through 1981. The national bacterial meningitis surveillance study. JAMA. 1985;253:17491754.Google Scholar
2.Bohr, V, Paulson, O, Rasmussen, N. Pneumococcal meningitis: late neurologic sequelae and features of prognostic impact. Arch Neurol. 1984;41:10451049.Google Scholar
3.Dodge, PR, Davis, H, Feigin, RDTet al.Prospective evaluation oi hearing impairment as a sequelae of acute bacterial meningitis. N Engl J Med. 1984;311:869874.Google Scholar
4.Tunkel, AR, Scheld, WM. Applications of therapy in animal models to bacterial infection in human disease. Infect Dis Clin North Am. 1989;3:441459.Google Scholar
5.Dacey, RG Jr, Sande, MA. Effect of probenecid on cerebrospinal fluid concentrations of penicillin and cephalosporin derivatives. Antimicrob Agents Chemother. 1974;6:437444.Google Scholar
6.Quagliarello, V JrLong, WJ, Scheld, WM. Morphologic alterations of the blood-brain barrier with experimental meningitis in the rat. Temporal sequence and role of encapsulation. J Clin invest. 1986;77: 10941095.Google Scholar
7.Norrby, R. A review of the penetration of antibiotics into CSF and its clinical significance. Scand J Infect Dis Suppl. 1978;14:296309.Google Scholar
8.Scheld, WM. Theoretical and practical considerations of antibiotic therapy for bacterial meningitis. Pediatr Infect Dis J. 1985;4:7483.Google Scholar
9.Sande, MA, Sheretz, RJ, Zak, O, Strausbaugh, LJ. Cephalosporin antibiotics in therapy of experimental Streptococcus pneumoniae and Haemophilus influenzae meningitis in rabbits. J Infect Dis. 1978;137(suppl):S161S168.Google Scholar
10.Strausbaugh, LJ, Murray, TW, Sande, MA. Comparative penetration of six antibiotics into the cerebrospinal fluid of rabbits with experimental staphylococcal meningitis. J Antimicrob Chemother. 1980;6:363371.Google Scholar
11.Strausbaugh, LJ, Sande, MA. Factors influencing the therapy of experimental Proteus mirabilis meningitis in rabbits. J Infect Dis. 3978;137:251260.Google Scholar
12.Nolan, CM, Ulmer, CW Jr. A study of cephalothin and desacetylcephalothin in cerebrospinal fluid in therapy for experimental pneumococcal meningitis. J Infect Dis. 1980;141:326330.Google Scholar
13.Nolan, CM, Ulmer, CW Jr. Penetration of cefotaxime and moxalactam into cerebrospinal fluid of rabbits with experimentally induced Escherichia colt meningitis. Rev Inject Dis. 1982;4(suppl):S396S400.Google Scholar
14.Wallace, JF, Smith, KH, Garcia, M, et al.Studies on the pathogenesis of meningitis, VI: antagonism between penicillin and chloramphenicol in experimental pneumococcal meningitis. J Lab Clin Med. 1967;70:408418.Google Scholar
15.Cherubin, CE, Marr, JS, Sierra, ME, Becker, S. Listeria and gram-negative bacillary meningitis in New York City 1972.1979. Frequent causes of meningitis in adults. Am Med. 1981;71:199209.Google Scholar
16.Scheld, WM. Fletcher, DD, Fink, FN, et al.Response to therapy in an experimental rabbit model of meningitis due to Listeria monocytogenes. J Infect Dis. 1979;160:287294.Google Scholar
17.Scheld, WM, Alliegro, GM, Field, MR. Brodeur, JP. Synergy between ampicillin and gentamicin in experimental menmgitis due to group B streptococci. J Infect Dis. 1982;146:100.Google Scholar
18.Sande, MA, Korzeniowski, OM, Alliegro, GM, Brennan, RO, Zak, O, Scheld, WM. Intermittent or continuous therapy of experimental meningitis due to Streptococcus pneumoniae in rabbits: preliminary observations on the post-antibiotic effect in vivo. Rev Infect Dis. 1981;3:98109.Google Scholar
19.Schaad, UB, McCracken, GH Jr, Loock, CA, Thomas, ML. Pharand bacteriological efficacy of moxalactam, cefotaxime, cefoperazone> and rocephin in experimental bacterial meningitis. J Infect Dis. 1981;143: 156163.+and+rocephin+in+experimental+bacterial+meningitis.+J+Infect+Dis.+1981;143:+156–163.>Google Scholar
20.Scheld, WM, Brown, RS Jr, Sande, MA. Comparison of netilmicin with gentamicin in the therapy of experimental Escherichia coli meningitis. Antimicrob Agents Chemother. 1978;13:899904.Google Scholar
21.Scheld, WM, Sande, MA. Bactericidal versus bacteriostatic antibiotic therapy of experimental pneumococcal meningitis in rabbits. J Clin Invest. 1983;71:411419.Google Scholar
22.Tunkel, AK. Wispelwey, B, Scheld, WM. Bacterial meningitis: recent advances in pathogenesis, pathophysiology, and treatment. Ann Intern Med. In press.Google Scholar
23.Ward, J. An tibiotic-resistant Streptococcus pneumoniae clinical and epidemiologic aspects. Rev Infect Dis. 1981;3:254266.Google Scholar
24.Jackson, MA, Shelton, S, Nelson, JD, McCracken, GH Jr. Relatively penicillin-resistant pneumococcal infections in pediatric patients. Pediatr Infect Dis. 1984;3:129132.Google Scholar
25.Simberkoff, MS, Lukaszewski, M, Cross, A, et al.Antibiotic-resistant isolates of Streptococcus pneumoniae from clinical specimens: a cluster of serotype 19A organisms in Brooklyn, New York. J Infect Dis. 1986;153:7882.Google Scholar
26.Applebaum, PC. World-wide development of antibiotic resistance in pneumococci. Eurf Clin Microbiol. 1987;6:367377.Google Scholar
27.Tomasz, A. Biochemistry and Genetics of Penicillin Resistance in Pneumococci. In: Ferretti, JJ, Curtiss, R III, eds. Streptococcal genetics. Washington, DC: American Society for Microbiology;1987:8792.Google Scholar
28.Viladrich, PF, Gudiol, F, Liñares, J, Rufi, G, Ariza, J, Pallares, R. Characteristics and antibiotic therapy of adult meningitis due to penicillin-resistant pneumococci. Am J Med. 1988;84:839846.Google Scholar
29.Dillon, JK, Pauze, M, Yeung, KH. Spread of penieillinase-producing and transfer plasmids from the gonococcus to Neisseria meningitidis. Lancet. 1983;1:779781.Google Scholar
30.Campos Mendelman, PM Jr., Sako, MU, Chaffm, DO, Smith, AL, Saez-Nieto, JA. Detection of relatively penicillin G-resistant Neisseria meningitidis by disk susceptibility testing. Antimicrob Agents Chemother. 1987;31:14781482.Google Scholar
31.Esso, DV, Fortanals, D, Uriz, S, et al.Neissena meningitidis strains with decreased susceptibility to penicillin. Pediatr Infect Dis. 1987;6:438439.Google Scholar
32.Mendelman, PM, Campos, J, Chaffin, DO, Serfass, DA, Smith, AL, Saez-Nieto, JA. Relative penicillin Gresistance in Neisseria meningitidis and reduced affinity of penicillin-binding protein 3. Antimicrob Agents Chemother. 1988;32:706709.Google Scholar
33.del Rio, A, Chrane, D, Shelton, S, McCracken, GH Jr, Nelson, JD. Ceftriaxone versus ampicillin and chloramphenicol for treatment of bacterial meningitis in children. Lancet. 1983;1:12411244.Google Scholar
34.Jacobs, RF, Wells, TG, Steele, RW, Yamauchi, T. A prospective randomized comparison of cefotaxime vs ampicillin and chloramphenicol for bacterial meningitis in children. J Pediatr. 1985; 107:129133.Google Scholar
35.Committee on Infectious Diseases, Academy of Pediatrics. Treatment of bacterial meningitis. Pediatrics. 1988;81:904907.Google Scholar
36.Peltola, H, Anttila, M, Renkonen, OV, et al.Randomized comparison of chloramphenicol, ampicillin, cefotaxime, and ceftriaxone for childhood bacterial meningitis. Lancet. 1989;1:12811287.Google Scholar
37.Cherubin, CE, Corrado, ML, Nais, SR, Grombert, ME, Landesmans, S, Humbert, GO. Treatment of gram-negative bacillary meningitis. Role of new cephalosporin antibiotics. Rev Infect Dis. 1982;4(suppl):S453S464.Google Scholar
38.Landesman, SH, Corrado, ML, Shah, PM, Armengaud, M, Barza, M, Cherubine, CE. Past and current roles for cephalosporin antibiotics in treatment of meningitis. Emphasis on use in gram-negative bacillary meningitis. Am J Med. 1981;71:693703.Google Scholar
39.Modai, J, Vittecoq, D, Decazes, JM, Wolff, M, Menlemans, A. Penetration of into cerebrospinal fluid of patients with bacterial meningitis. Antimicrob Agents Chemother. 1983;24:126128.Google Scholar
40.Fong, IW, Tomkins, KB. Penetration of ceftazidime into the cerebrospinal fluid of patients with and without evidence of meningeal inflammation. Antimicrob Agents Chemother. 1984;26:115116.Google Scholar
41.Fong, IW, Tomkins, KB. Review of Pseudomonas aeruginosa meningitis with special emphasis on treatment with ceftazidime. Rev Infect Dis. 1985;7:604612.Google Scholar
42.Hackbarth, CJ, Chambers, HF, Stella, F, Shibl, AM, Sande, MA. Ciprofloxacin in experimental Pseudomonas aeruginosa meningitis in rabbits. J Antimicrob Chemother. 1986; 18(suppl D):6569.Google Scholar
43.Segev, S, Barzilai, A, Rosen, N, Joseph, G, Rubinstein, K. Pefloxacin treatment of meningitis caused by gram-negative bacteria. Arch Intern Med. 1989;149:13141316.Google Scholar
44.Trautman, M. Wagner, J, Chahin, M, Weinke, T. Listeria meningitis: report of ten cases and review of current therapeutic recommendations. J Infect. 1985;10:107114.Google Scholar
45.Hansen, PB, Jensen, TH, Lykkegaard, S, Kristensen, HS. Listeria monocytogenes meningitis inadults. Sixteen consecutive cases 1973-1982. Scand J Infect Dis. 1Y87;19:5560.Google Scholar
46.Levitz, RE, Quintiliani, R. Trimethoprim-sulfamethoxazole for bacterial meningitis. Ann Intern Med. 1984;100:881890.Google Scholar
47.Gellin, BG, Broome, CV. Listeriosis. JAMA. 1989;261:13131320.Google Scholar
48.Schlesinger, LS, Ross, SC, Schaberg, DR. Staphylococcus aureus meningitis: a broad-based epidemiologic study. Medicine. 1987;66:148156.Google Scholar
49.Brumfitt, W, Hamilton-Miller, J. Methicillin-resistant Staphylococcus aureus. N Engl J Med. 1989;320:11881196.Google Scholar
50.Gombert, ME, Landesman, SH, Corrado, ML, Stem, SC. Melvm, ET, Cummings, M. Vancomycin and rifampin therapy for Staphylococcus epidermidis meningitis associated with CSF shunts. J Neurosurg. 1981;55:633636.Google Scholar
51.Vichyanond, P. Olson, L. Staphylococcal CNS infections treated with vancomycin and rifampin. Arch Neurol. 1984;41:637639.Google Scholar
52.Marks, WA, Stutman, HR. Marks, MI, et al.Cefuroxime versus ampicillin plus chloramphenicol in childhood bacterial meningitis: a multicenter randomized controlled trial. J Pediatr. 1986;109:123130.Google Scholar
53.Jadavji, TT, Biggar, WD, Gold, K, et al.Sequelae of acute bacterial meningitis in children treated for seven days. Pediatrics. 1985;78:2125.Google Scholar
54.Lin, TY, Chrane, DF, Nelson, JD, McCracken, GH Jr.Seven days of ceftriaxone therapy is as effective as ten days' treatment for bacterial meningitis. JAMA. 1985;253:35593563.Google Scholar
55.Tuomanen, E, Hengstler, B, Rich, R, Bray, MA, Zak, O, Tomasz, A. Non-steroidal anti-inflammatory agents in the therapy for- experimental pneumococcal meningitis. J Infect Dis. 1987;155:985990.Google Scholar
56.Tureen, JH, Stella, FB, Clyman, RI, Mauray, FSande, MA. Effect of indomethacin on brain.water content, cerebrospinal Huid white blood cell response and prostaglandin E2 levels in cerebrospinal fluid in experimental pneumococcal meningitis in rabbits. Pediatr Infect Di J. 1987;6:11511153.Google Scholar
57.Nolan, CM, McAllister, CK, Walters, E, Beaty, HN. Experimental pneumococcal meningitis, IV: the effect of methylprednisolone on meningeal inflammation. J Lab Clin Med. 1978;91:979988.Google Scholar
58.Scheld, WM, Dacey, RG Jr, Winn, HR, Welsh, JE, Jane, JA, Sande, MA. fluid outflow resistance in rabbits with experimental meningitis. Alterations with penicillin and methylprednisolone. J Clin Invest. 1980;66:243253.Google Scholar
59.Tauber, MG, Khayam-Bashi, H, Sande, MA. Effects of ampicillin and on brain water content, cerebrospinal fluid pressure, and fluid lactate levels in experimental pneumococcal meningitis. J Infect Dis. 1985;151:528534.Google Scholar
60.Syrogiannopoulos, GA, Olsen, KD, Reisch, JS, McCracken, GH Jr. Dex-amethasone in the treatment of experimental Haemophilus influenzae type b meningitis. J Infect Dis. 1987;155:213219.Google Scholar
61.Lebel, MH, Freij, BJ, Syrogiannopoulos, GA, et al.Dexamethasone therapy for bacterial menmgitis. Results of two double-blind, placebo-controlled trials. N Engl J Med. 1988;319:964971.Google Scholar
62.Lebel, MH, Hoyt, J, Waagner, DC, et al.Magnetic resonance imaging and dexamethasone therapy for bacterial meningitis. Am J Dis Child 1989;143:301306.Google Scholar
63.McCracken, GH Jr, Lebel, MH. Dexamethasone therapy for bacterial meningitis in infants and children. Am J Dis Child. 1989;143:287289.Google Scholar
64.Smith, AL. Neurologic sequelae of meningitis. N Engl J Med 1988;319:10121014.Google Scholar
65.Kaplan, SL. Dexamethasone for children with bacterial meningitis. Should it be routine therapy? Am J Dis Child 1989;143:290292.Google Scholar
66.Mustafa, MM, Lebel, MH, Ramilo, O, et al.Correlation of interleukin-lß and cachectin concentrations in cerebrospinal fluid and outcome from bacterial meningitis. J Pediatr. 1989;115:208213.Google Scholar
67.Cherubin, CE, Eng, RHK, Norrby, R, Modai, J, Humbert, G, Overturf, G. Penetration of newer cephalosporins into cerebrospinal fluid. Rev Infect Dis. 1989;11:526548.Google Scholar
68.Tuomanen, E. Partner drugs: a new outlook for bacterial meningiris. Ann Intern Med. 1988;109:690692.Google Scholar