Skip to main content Accessibility help
×
Home

The preventable proportion of healthcare-associated infections 2005–2016: Systematic review and meta-analysis

  • Peter W. Schreiber (a1), Hugo Sax (a1) (a2), Aline Wolfensberger (a1), Lauren Clack (a1), Stefan P. Kuster (a1) (a2) and Swissnoso (a1) (a2)...

Abstract

Objective

The preventable proportion of healthcare-associated infections (HAIs) may decrease over time as standards of care improve. We aimed to assess the proportion of HAIs prevented by multifaceted infection control interventions in different economic settings.

Methods

In this systematic review and meta-analysis, we searched OVID Medline, EMBASE, CINAHL, PubMed, and The Cochrane Library for studies published between 2005 and 2016 assessing multifaceted interventions to reduce catheter-associated urinary tract infections (CAUTIs), central-line–associated bloodstream infections (CLABSIs), surgical site infections (SSIs), ventilator-associated pneumonia (VAP), and hospital-acquired pneumonia not associated with mechanical ventilation (HAP) in acute-care or long-term care settings. For studies reporting raw rates, we extracted data and calculated the natural log of the risk ratio and variance to obtain pooled risk ratio estimates.

Results

Of the 5,226 articles identified by our search, 144 studies were included in the final analysis. Pooled incidence rate ratios associated with multifaceted interventions were 0.543 (95% confidence interval [CI], 0.445–0.662) for CAUTI, 0.459 (95% CI, 0.381–0.554) for CLABSI, and 0.553 (95% CI, 0.465–0.657) for VAP. The pooled rate ratio was 0.461 (95% CI, 0.389–0.546) for interventions aiming at SSI reduction, and for VAP reduction initiatives, the pooled rate ratios were 0.611 (95% CI, 0.414–0.900) for before-and-after studies and 0.509 (95% CI, 0.277–0.937) for randomized controlled trials. Reductions in infection rates were independent of the economic status of the study country. The risk of bias was high in 143 of 144 studies (99.3%).

Conclusions

Published evidence suggests a sustained potential for the significant reduction of HAI rates in the range of 35%–55% associated with multifaceted interventions irrespective of a country’s income level.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The preventable proportion of healthcare-associated infections 2005–2016: Systematic review and meta-analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The preventable proportion of healthcare-associated infections 2005–2016: Systematic review and meta-analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The preventable proportion of healthcare-associated infections 2005–2016: Systematic review and meta-analysis
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence Stefan P. Kuster MD, MSc, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Raemistrasse 100/HAL14 D6, 8091 Zürich, Switzerland. E-mail: stefan.kuster@usz.ch

References

Hide All

*References 41–161 are available in the online supplementary material.

1. Haley, RW, Culver, DH, White, JW, et al. The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol 1985;121:182205.
2. Harbarth, S, Sax, H, Gastmeier, P. The preventable proportion of nosocomial infections: an overview of published reports. J Hosp Infect 2003;54:258266.
3. Umscheid, CA, Mitchell, MD, Doshi, JA, Agarwal, R, Williams, K, Brennan, PJ. Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs. Infect Control Hosp Epidemiol 2011;32:101114.
4. World Bank list of economies. World Bank website. databank.worldbank.org/data/download/site-content/CLASS.xls. Updated June 2018. Accessed Seepember 4, 2017.
5. Higgins, JPT, Green, S, editors. Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0. The Cochrane Collaboration website. http://handbook.cochrane.org. Updated March 2011. Accessed June 10, 2017.
6. Suggested risk of bias criteria for EPOC reviews. EPOC Resources for review authors, 2017. Cochrane Effective Practice and Organization of Care (EPOC) website. http://epoc.cochrane.org/epoc-specific-resources-review-authors. Accessed June 10, 2017.
7. Spittal, MJ, Pirkis, J, Gurrin, LC. Meta-analysis of incidence rate data in the presence of zero events. BMC Med Res Method 2015;15:42.
8. Zingg, W, Cartier, V, Inan, C, et al. Hospital-wide multidisciplinary, multimodal intervention programme to reduce central venous catheter-associated bloodstream infection. PLoS One 2014;9:e93898.
9. Yavuz, SS, Tarcin, O, Ada, S, et al. Incidence, aetiology, and control of sternal surgical site infections. J Hosp Infect 2013;85:206212.
10. Yamamoto, T, Morimoto, T, Kita, R, et al. The preventive surgical site infection bundle in patients with colorectal perforation. BMC surg 2015;15:128.
11. Wick, EC, Hobson, DB, Bennett, JL, et al. Implementation of a surgical comprehensive unit-based safety program to reduce surgical site infections. J Am Coll Surg 2012;215:193200.
12. Wahl, WL, Arbabi, S, Zalewski, C, Wang, SC, Hemmila, MR. Intensive care unit core measures improve infectious complications in burn patients. J Burn Care Res 2010;31:190195.
13. Viana, WN, Bragazzi, C, Couto de Castro, JE, Alves, MB, Rocco, JR. Ventilator-associated pneumonia prevention by education and two combined bedside strategies. Int J Qual Health Care 2013;25:308313.
14. van Kasteren, ME, Mannien, J, Kullberg, BJ, et al. Quality improvement of surgical prophylaxis in Dutch hospitals: evaluation of a multi-site intervention by time series analysis. J Antimicrob Chemother 2005;56:10941102.
15. van der Slegt, J, van der Laan, L, Veen, EJ, Hendriks, Y, Romme, J, Kluytmans, J. Implementation of a bundle of care to reduce surgical site infections in patients undergoing vascular surgery. PLoS One 2013;8:e71566.
16. Tsai, DM, Caterson, EJ. Current preventive measures for health-care associated surgical site infections: a review. Patient Safety in Surgery 2014;8.
17. Trussell, J, Gerkin, R, Coates, B, et al. Impact of a patient care pathway protocol on surgical site infection rates in cardiothoracic surgery patients. Am J Surg 2008;196:883889.
18. Titsworth, WL, Hester, J, Correia, T, et al. Reduction of catheter-associated urinary tract infections among patients in a neurological intensive care unit: a single institution’s success: clinical article. J Neurosurg 2012;116:911920.
19. Tillekeratne, LG, Linkin, DR, Obino, M, et al. A multifaceted intervention to reduce rates of catheter-associated urinary tract infections in a resource-limited setting. Am J Infect Control 2014;42:1216.
20. Ternavasio-de la Vega, HG, Barbosa Ventura, A, Castano-Romero, F, et al. Assessment of a multi-modal intervention for the prevention of catheter-associated urinary tract infections. J Hosp Infect 2016;94:175181.
21. Taylor, JS, Marten, CA, Munsell, MF, et al. The DISINFECT initiative: decreasing the incidence of surgical infections in gynecologic oncology. Ann Surg Oncol 2017:24:362368.
22. Tao, L, Hu, B, Rosenthal, VD, Zhang, Y, Gao, X, He, L. Impact of a multidimensional approach on ventilator-associated pneumonia rates in a hospital of Shanghai: findings of the International Nosocomial Infection Control Consortium. J Crit Care 2012;27:440446.
23. Tanner, J, Kiernan, M, Hilliam, R, et al. Effectiveness of a care bundle to reduce surgical site infections in patients having open colorectal surgery. Ann R Coll Surg Engl 2016;98:270274.
24. Tang, HJ, Lin, HL, Lin, YH, Leung, PO, Chuang, YC, Lai, CC. The impact of central line insertion bundle on central line-associated bloodstream infection. BMC Infect Dis 2014;14.
25. Talbot, TR, Carr, D, Parmley, CL, et al. Sustained reduction of ventilator-associated pneumonia rates using real-time course correction with a ventilator bundle compliance dashboard. Infect Control Hosp Epidemiol 2015;36:12611267.
26. Sutherland, T, Beloff, J, McGrath, C, et al. A single-center multidisciplinary initiative to reduce catheter-associated urinary tract infection rates: quality and financial implications. Health Care Manag (Frederick) 2015;34:218224.
27. Shitrit, P, Meirson, M, Mendelson, G, Chowers, M. Intervention to reduce ventilator-associated pneumonia in individuals on long-term ventilation by introducing a customized bundle. J Am Geriatr Soc 2015;63:20892093.
28. Sen, S, Johnston, C, Greenhalgh, D, Palmieri, T. Ventilator-associated pneumonia prevention bundle significantly reduces the risk of ventilator-associated pneumonia in critically ill burn patients. J Burn Care Res 2016;37:166171.
29. Salim, R, Braverman, M, Berkovic, I, Suliman, A, Teitler, N, Shalev, E. Effect of interventions in reducing the rate of infection after cesarean delivery. Am J Infect Control 2011;39:e73e78.
30. Salama, MF, Jamal, W, Al Mousa, H, Rotimi, V. Implementation of central venous catheter bundle in an intensive care unit in Kuwait: effect on central line-associated bloodstream infections. J Infect Public Health 2016;9:3441.
31. Rosenthal, VD, Rodrigues, C, Alvarez-Moreno, C, et al. Effectiveness of a multidimensional approach for prevention of ventilator-associated pneumonia in adult intensive care units from 14 developing countries of four continents: findings of the International Nosocomial Infection Control Consortium. Crit Care Med 2012;40:31213128.
32. Rosenthal, VD, Ramachandran, B, Villamil-Gomez, W, et al. Impact of a multidimensional infection control strategy on central line-associated bloodstream infection rates in pediatric intensive care units of five developing countries: findings of the International Nosocomial Infection Control Consortium (INICC). Infection 2012;40:415423.
33. Rosenthal, VD, Guzman, S, Crnich, C. Impact of an infection control program on rates of ventilator-associated pneumonia in intensive care units in 2 Argentinean hospitals. Am J Infect Control 2006;34:5863.
34. Render, ML, Hasselbeck, R, Freyberg, RW, Hofer, TP, Sales, AE, Almenoff, PL. Reduction of central line infections in Veterans Administration intensive care units: an observational cohort using a central infrastructure to support learning and improvement. BMJ Qual Safety 2011;20:725732.
35. Rello, J, Afonso, E, Lisboa, T, et al. A care bundle approach for prevention of ventilator-associated pneumonia. Clin Microbiol Infect 2013;19:363369.
36. Reddy, KK, Samuel, A, Smiley, KA, Weber, S, Hon, H. Reducing central line-associated bloodstream infections in three ICUs at a tertiary-care hospital in the United Arab Emirates. Jt Comm J Qual Patient Saf 2014;40:5591551.
37. Rauk, PN. Educational intervention, revised instrument sterilization methods, and comprehensive preoperative skin preparation protocol reduce cesarean section surgical site infections. Am J Infect Control 2010;38:319323.
38. Pronovost, P. Interventions to decrease catheter-related bloodstream infections in the ICU: the Keystone Intensive Care Unit Project. Am J Infect Control 2008;36:S171.e171e175.
39. Prieto, J, Medina, JC, López, M, et al. Impact of a multimodal approach in prevention of surgical site infection in hepatic transplant recipients. Transplant Proc 2016;48:658664.
40. Parry, MF, Grant, B, Sestovic, M. Successful reduction in catheter-associated urinary tract infections: focus on nurse-directed catheter removal. Am J Infect Control 2013;41:11781181.
Type Description Title
PDF
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 1

 PDF (219 KB)
219 KB
WORD
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 2

 Word (24 KB)
24 KB
WORD
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 3

 Word (25 KB)
25 KB
WORD
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 4

 Word (14 KB)
14 KB
UNKNOWN
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 5

 Unknown (22.0 MB)
22.0 MB
UNKNOWN
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 6

 Unknown (26.1 MB)
26.1 MB
UNKNOWN
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 7

 Unknown (22.0 MB)
22.0 MB
UNKNOWN
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 8

 Unknown (26.1 MB)
26.1 MB
UNKNOWN
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 9

 Unknown (22.0 MB)
22.0 MB
UNKNOWN
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 10

 Unknown (26.1 MB)
26.1 MB
UNKNOWN
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 11

 Unknown (22.0 MB)
22.0 MB
UNKNOWN
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 12

 Unknown (26.1 MB)
26.1 MB
UNKNOWN
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 13

 Unknown (26.1 MB)
26.1 MB
UNKNOWN
Supplementary materials

Schreiber et al. supplementary material
Schreiber et al. supplementary material 14

 Unknown (26.1 MB)
26.1 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed