Skip to main content Accessibility help
×
Home

Multidrug-Resistant Organisms Detected More Than 48 Hours After Hospital Admission Are Not Necessarily Hospital-Acquired

  • Stefan Erb (a1), Reno Frei (a2), Marc Dangel (a1) and Andreas F. Widmer (a1)

Abstract

BACKGROUND

Infections and colonization with multidrug-resistant organisms (MDROs) identified >48 hours after hospital admission are considered healthcare-acquired according to the definition of the Centers for Disease Control and Prevention (CDC). Some may originate from delayed diagnosis rather than true acquisition in the hospital, potentially diluting the impact of infection control programs. In addition, such infections are not necessarily reimbursed in a healthcare system based on the diagnosis-related groups (DRGs).

OBJECTIVE

The goal of the study was to estimate the preventable proportion of healthcare-acquired infections in a tertiary care hospital in Switzerland by analyzing patients colonized or infected with MDROs.

METHODS

All hospitalized patients with healthcare-acquired MDRO infection or colonization (HAMIC) or according to the CDC definition (CDC-HAMIC) were prospectively assessed from 2002 to 2011 to determine whether there was evidence for nosocomial transmission. We utilized an additional work-up with epidemiological, microbiological, and molecular typing data to determine the true preventable proportion of HAMICs.

RESULTS

Overall, 1,190 cases with infection or colonization with MDROs were analyzed; 274 (23.0%) were classified as CDC-HAMICs. Only 51.8% of CDC-HAMICs had confirmed evidence of hospital-acquisition and were considered preventable. Specifically, 57% of MRSA infections, 83.3% of VRE infections, 43.9% of ESBL infections, and 74.1% of non-ESBL MDRO infections were preventable HAMICs.

CONCLUSIONS

The CDC definition overestimates the preventable proportion of HAMICs with MDROs by more than 50%. Relying only on the CDC definition of HAMICs may lead to inaccurate measurement of the impact of infection control interventions and to inadequate reimbursement under the DRG system.

Infect. Control Hosp. Epidemiol. 2016;1–6

Copyright

Corresponding author

Address correspondence to Prof. Andreas F. Widmer, MD, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland (Andreas.Widmer@usb.ch).

References

Hide All
1. Enthoven, AC. Reforming Medicare by reforming incentives. N Engl J Med 2011;364:e44.
2. Jha, AK, Joynt, KE, Orav, EJ, Epstein, AM. The long-term effect of premier pay for performance on patient outcomes. N Engl J Med 2012;366:16061615.
3. Rosenthal, MB. Nonpayment for performance? Medicare’s new reimbursement rule. N Engl J Med 2007;357:15731575.
4. Wenzel, RP. Nosocomial infections, diagnosis-related groups, and study on the efficacy of nosocomial infection control. Economic implications for hospitals under the prospective payment system. Am J Med 1985;78:37.
5. Garner, JS, Jarvis, WR, Emori, TG, Horan, TC, Hughes, JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16:128140.
6. Identifying Healthcare-Associated Infections (HAI) for NHSN Surveillance. Centers for Disease Control and Prevention website. http://www.cdc.gov/nhsn/PDFs/pscManual/2PSC_IdentifyingHAIs_NHSNcurrent.pdf. Published January 2016. Accessed September 13, 2016.
7. Horan, TC, Andrus, M, Dudeck, MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008;36:309332.
8. Fluckiger, U, Widmer, AF. Epidemiology of methicillin-resistant Staphylococcus aureus . Chemotherapy 1999;45:121134.
9. Widmer, A, Frei, R. The impact of infection control (IC) on MRSA: the need for a standardized classification. Presented at: 35th Annual IDSA Meeting; 1997; San Francisco, CA.
10. Multidrug-Resistant Organism and Clostridium difficile Infection (MDRO/CDI) Module. Centers for Disease Control and Prevention website. http://www.cdc.gov/nhsn/PDFs/pscManual/12pscMDRO_CDADcurrent.pdf. Published April 2013. Accessed September 13, 2016.
11. Pfaller, M, Hollis, R, Sader, H, et al. Chromosomal restriction fragment analysis by pulsed-field gel electrophoresis. In: Clinical Microbiology Procedures Handbook. Washington; 1992. 10.5.c.1–10.5.c.12.
12. Stranden, A, Frei, R, Widmer, AF. Molecular typing of methicillin-resistant Staphylococcus aureus: Can PCR replace pulsed-field gel electrophoresis? J Clin Microbiol 2003;41:31813186.
13. Lambert, ML, Silversmit, G, Savey, A, et al. Preventable proportion of severe infections acquired in intensive care units: case-mix adjusted estimations from patient-based surveillance data. Infect Control Hosp Epidemiol 2014;35:494501.
14. Fenner, L, Widmer, AF, Dangel, M, Frei, R. Distribution of spa types among meticillin-resistant Staphylococcus aureus isolates during a 6-year period at a low-prevalence university hospital. J Med Microbiol 2008;57:612616.
15. Mertz, D, Frei, R, Periat, N, et al. Eradication of an epidemic methicillin-resistant Staphylococcus aureus (MRSA) from a geriatric university hospital: evidence from a 10-year follow-up. Eur J Clin Microbiol Infect Dis 2010;29:987993.
16. Buehlmann, M, Frei, R, Fenner, L, Dangel, M, Fluckiger, U, Widmer, AF. Highly effective regimen for decolonization of methicillin-resistant Staphylococcus aureus carriers. Infect Control Hosp Epidemiol 2008;29:510516.
17. Buehlmann, M, Bruderer, T, Frei, R, Widmer, AF. Effectiveness of a new decolonisation regimen for eradication of extended-spectrum beta-lactamase-producing Enterobacteriaceae. J Hosp Infect 2011;77:113117.
18. Siegel, JD, Rhinehart, E, Jackson, M, Chiarello, L, Health Care Infection Control Practices Advisory C. 2007 Guideline for isolation precautions: preventing transmission of infectious agents in health care settings. Am J Infect Control 2007;35:S65S164.
19. Pittet, D, Allegranzi, B, Storr, J, Donaldson, L. ‘Clean Care is Safer Care’: the Global Patient Safety Challenge 2005–2006. Int J Infect Dis 2006;10:419424.
20. Pronovost, P, Needham, D, Berenholtz, S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 2006;355:27252732.
21. Kmietowicz, Z. Hospital infection rates in England out of control. BMJ 2000;320:534.
22. Orsi, GB, Di Stefano, L, Noah, N. Hospital-acquired, laboratory-confirmed bloodstream infection: increased hospital stay and direct costs. Infect Control Hosp Epidemiol 2002;23:190197.
23. Harbarth, S, Sax, H, Gastmeier, P. The preventable proportion of nosocomial infections: an overview of published reports. J Hosp Infect 2003;54:258266; quiz 321.
24. Haley, RW, Morgan, WM, Culver, DH, et al. Update from the SENIC project. Hospital infection control: recent progress and opportunities under prospective payment. Am J Infect Control 1985;13:97108.
25. Vegni, FE, Panceri, ML, Biffi, M, Banfi, E, Porretta, AD, Privitera, G. Three scenarios of clinical claim reimbursement for nosocomial infection: the good, the bad, and the ugly. J Hosp Infect 2004;56:150155.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed