Skip to main content Accessibility help

Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Disseminated in a Home Care System

  • R. Rozenbaum (a1), M. C. Silva-Carvalho (a2), R. R. Souza (a2), M. C. N. Melo (a3), C. N. Gobbi (a2), L. R. Coelho (a2), R. L. Ferreira (a2), B. T. Ferreira-Carvalho (a2), A. L. Schuenck (a4), F. M. C. S. Neves (a4), L. R. P. O. F. Silva (a4) and A. M. S. Figueiredo (a2)...



To study colonization with methicillin-resistant Staphylococcus aureus in a home care service during a 4-month period.


Prospective study.


A home care service located in Rio de Janeiro, Brazil.


Patients admitted to the home care service during this period, their household contacts, and health care workers (HCWs).


Swab specimens from the anterior nares were collected from each patient in the 3 groups at admission. Screening was repeated every 7 days. MRSA was detected using a mecA probe, and the clonality of isolates was evaluated by molecular methods, primarily pulsed-field gel electrophoresis.


Of the 59 study patients, 9 (15.3%) had MRSA colonization detected; these cases of colonization were classified as imported. Only 1 (2.0%) of the 50 patients not colonized at admission became an MRSA carrier (this case of colonization was classified as autochthonous). Two (0.9%) of 224 household contacts and 16 (7.4%) of 217 HCWs had MRSA colonization. Cross-transmission from patient to HCW could be clearly demonstrated in 8 cases. The great majority of MRSA isolates belonged to the Brazilian epidemic clone.


MRSA colonization was common in the home care service analyzed. The fact that the majority of MRSA isolates obtained were primarily of nosocomial origin (and belonged to the so-called Brazilian epidemic clone) substantiated our findings that all but 1 patient had already been colonized before admission to the home care service. Only cross-transmission from patients to healthcare workers could be verified. On the basis of these results, we believe that a control program built on admission screening of patients for detection of MRSA carriage could contribute to the overall quality of care.


Corresponding author

Hospital Samaritano, Rua Bambina 98, Botafogo, Rio de Janeiro, RJ, 22.251-050, Brazil (


Hide All
1. Katayama, Y, Ito, T, Hiramatsu, KA. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus . Antimicrob Agents Chemother 2000; 44:15491555.
2. National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1992 through June 2004, issued October 2004. Am J Infec Control 2004; 32:470485.
3. Oliveira, DC, Tomasz, A, De Lencastre, H. Secrets of success of a human pathogen: molecular evolution of pandemic clones of methicillin-resistant Staphylococcus aureus . Lancet Infect Dis 2002; 2:180189.
4. Dominguez, MA, De Lencastre, H, Linares, J, Tomasz, A. Spread and maintenance of a dominant methicillin-resistant Staphylococcus aureus (MRSA) clone during an outbreak of MRSA disease in a Spanish hospital. J Clin Microbiol 1994; 32:20812087.
5. Teixeira, LA, Resende, CA, Ormonde, LR, et al. Geographic spread of epidemic multiresistant Staphylococcus aureus clone in Brazil. J Clin Microbiol 1995; 33:24002404.
6. Coimbra, MVS, Silva-Carvalho, MC, Wisplinghoff, H, et al. Clonal spread of methicillin-resistant Staphylococcus aureus in a large geographic area of the United States. J Hosp Infect 2003; 53:103110.
7. Sä-Leão, R, Santos-Sanches, I, Dias, D, Peres, I, Barros, RM, De Lencastre, H. Detection of an archaic clone of Staphylococcus aureus with low-level resistance to methicillin in a pediatric hospital in Portugal and in international samples: relics of a formerly widely disseminated strain? Clin Microbiol 1999; 37:19131920.
8. McDougal, LK, Steward, CD, Killgore, GE, Chaitram, JM, McAllister, SK, Tenover, FC. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 2003; 41:51135120.
9. Dos Santos Soares, MJ, Silva-Carvalho, MC, Ferreira-Carvalho, BT, Figueiredo, AMS. Spread of methicillin-resistant Staphylococcus aureus belonging to the Brazilian epidemic clone in a general hospital and emergence of heterogeneous resistance to glycopeptide antibiotics among these isolates. J Hosp Infect 2000; 44:301308.
10. Soares, MJS, Teixeira, LA, Nunes, MR, Carvalho, MCS, Ferreira-Carvalho, BT, Figueiredo, AMS. Analysis of different molecular methods for typing methicillin-resistant Staphylococcus aureus isolates belonging to the Brazilian epidemic clone. J Med Microbiol 2001; 50:732742.
11. Ramos, RL, Teixeira, LA, Ormonde, LR, et al. Emergence of mupirocin resistance in multiresistant Staphylococcus aureus clinical isolates belonging to Brazilian epidemic clone III::B:A. J Med Microbiol 1999; 48:303307.
12. Netto dos Santos, KR, de Souza Fonseca, L, Gontijo Filho, PP. Emergence of high-level mupirocin resistance in methicillin-resistant Staphylococcus aureus isolated from Brazilian university hospitals. Infect Control Hosp Epidemiol 1996; 17:813816.
13. Coimbra, MVS, Teixeira, LA, Ramos, RLB, Predari, SC, Castelo, L, Figueiredo, AMS. Spread of the Brazilian epidemic clone of a multiresistant MRSA in two cities in Argentina. J Med Microbiol 2000; 49:187192.
14. Aires De Sousa, M, Miragaia, M, Santos Sanches, I, Heitman, I, De Lencastre, H. Three-year assessment of methicillin-resistant Staphylococcus aureus clones in Latin América from 1996 to 1998. J Clin Microbiol 2001; 39:21972205.
15. Oliveira, D, Sanches, IS, Tamayo, M, Ribeiro, G, Costa, D, De Lencastre, H. Virtually all MRSA infections in the largest Portuguese hospital are caused by two internationally spread multiresistant strains: the “Iberian” and the “Brazilian” clones of MRSA. Clin Microbiol Infect 1998; 4:373384.
16. Campanile, F, Cafiso, V, Cascone, C, Giannino, V, Di Marco, O, Stefani, S. Clonal diffusion and evolution of mecA and Tn554 polymorphisms in methicillin-resistant Staphylococcus aureus in Italy. Infez Med 2001; 9:3038.
17. Melter, O, Santos-Sanches, I, Schindler, J, Zemlickova, H, De Lencastre, H. Methicillin-resistant Staphylococcus aureus clonal types in the Czech Republic. J Clin Microbiol 1999; 37:27982803.
18. De Souza, MA, Crisostomo, MI, Sanches, IS, Fuzhong, JS, Tomasz, A, De Lencastre, H. Frequent recovery of a single clonal type of multidrug-resistant Staphylococcus aureus from patients in two hospitals in Taiwan and China. J Clin Microbiol 2003; 41:159163.
19. Fluckiger, U, Widmer, AF. Epidemiology of methicillin-resistant Staphylococcus aureus . Chemotherapy 1999; 45:121134.
20. Goetz, MB, Mulligan, ME, Kwok, R, O'Brien, H, Caballes, C, Garcia, JP. Management and epidemiologic analysis of an outbreak due to methicillin-resistant Staphylococcus aureus . Am J Med 1992; 92:607614.
21. O'Toole, RD, Drew, WL, Dahlgren, BJ, Beaty, HN. An outbreak of methicillin-resistant Staphylococcus aureus infection: observation in hospital and nursing home. JAMA 1970; 213:257263.
22. Storch, GA, Radecliff, JL, Meyer, PL, Hinrichs, JH. Methicillin-resistant Staphylococcus aureus in a nursing home. Infect Control 1987; 8:2429.
23. Kauffman, CA, Bradley, SF, Terpenning, MS. Methicillin-resistant Staphylococcus aureus infection in long-term facilities. Infect Control Hosp Epidemiol 1990; 11:600603.
24. Thompson, RL, Cabezudo, I, Wenzel, RP. Epidemiology of nosocomial infections caused by methicillin-resistant Staphylococcus aureus . Ann Intern Med 1982; 97:309317.
25. Maranan, MC, Moreira, B, Boyle-Vavra, S, Daum, RS. Antimicrobial resistance in staphylococci: epidemiology, molecular mechanisms, and clinical relevance. Infect Dis Clin North Am 1997; 11:813849.
26. Silva, FR, Mattos, EM, Coimbra, MVS, Ferreira-Carvalho, BT, Figueiredo, AMS. Isolation and molecular characterization of methicillin-resistant coagulase-negative staphylococci from nasal flora of healthy humans at three community institutions in Rio de Janeiro City. Epidemiol Infect 2001; 127:5762.
27. Murray, PR, Baron, EJ, Jorgensen, JH, Pfaller, MA, Yolken, RH. Staphylococcus, Micrococcus, and other catalase-positive cocci that grow aerobically. In: Manual of Clinical Microbiology. 8th ed. Washington, DC: ASM Press; 2003:384404.
28. Resende, CA, Figueiredo, AM. Discrimination of methicillin-resistant Staphylococcus aureus from borderline-resistant and susceptible isolates by different methods. J Med Microbiol 1997; 46:145149.
29. National Committee for Clinical Laboratory Standards (NCCLS). Performance Standards For Antimicrobial Susceptibility Testing. 6th ed. Approved standard M100-S13 (M7). Wayne, PA; NCCLS; 2003.
30. Finlay, JE, Miller, LA, Poupard, JA. Interpretive criteria for testing susceptibility of staphylococci to mupirocin. Antimicrob Agents Chemother 1997;41:11371139.
31. Sambrook, J, Fritsch, EF, Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1999.
32. Tenover, FC, Arbeit, RD, Goehing, RV, et al. Interpretation chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995; 33:22332239.
33. Matthews, PR, Reed, KC, Stewart, PR. The cloning of chromosomal DNA associated with methicillin and other resistances in Staphylococcus aureus . J Gen Microbiol 1987; 133:19191929.
34. Oliveira, DC, De Lencastre, H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother 2002; 46:21552161.
35. Harbarth, S, Liassine, N, Dharan, S, Herrault, P, Auckenthaler, R, Pittet, D. Risk factors for persistent carriage of methicillin-resistant Staphylococcus aureus . Clin Infect Dis 2000; 31:13801385.
36. Kosmidis, J, Koratzanis, G. Emergence of resistant bacterial strains during treatment of infections in the respiratory tract. Scand J Infect Dis Suppl 1986; 49:135139.
37. Terpenning, MS, Bradley, SF, Wan, JY, Chenoweth, CE, Jorgensen, KA, Kauffman, CA. Colonization and infection with antibiotic resistant bacteria in a long term care facility. J Am Geriatr Soc 1994; 42:10621069.
38. Zwicker, C, Deanne, MS, Aprn, BC. The elderly patient at risk. J Infus Nurs 2003; 26:137143.
39. Tansel, O, Kuloglu, F, Mutlu, B, et al. A methicillin-resistant Staphylococcus aureus outbreak in a new university hospital due to a strain transferred with an infected patient from another city six months previously. New Microbiol 2003; 26:175180.
40. Boyce, JM, Potter-Bynoe, G, Chenevert, C. Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications. Infect Control Hosp Epidemiol 1997; 18:622627.
41. Blythe, D, Kenlyside, D, Dawson, SJ. Environmental contamination due to methicillin-resistant Staphylococcus aureus (MRSA). J Hosp Infect 1998; 38:6770.
42. Vandenesch, F, Naimi, T, Enright, MC, et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 2003; 9:978984.
43. Ribeiro, A, Dias, C, Silva-Carvalho, MC, et al. First report of infection with community-acquired methicillin-resistant Staphylococcus aureus in South America. J Clin Microbiol 2005; 43:19851988.

Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Disseminated in a Home Care System

  • R. Rozenbaum (a1), M. C. Silva-Carvalho (a2), R. R. Souza (a2), M. C. N. Melo (a3), C. N. Gobbi (a2), L. R. Coelho (a2), R. L. Ferreira (a2), B. T. Ferreira-Carvalho (a2), A. L. Schuenck (a4), F. M. C. S. Neves (a4), L. R. P. O. F. Silva (a4) and A. M. S. Figueiredo (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed