Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-12T18:55:19.325Z Has data issue: false hasContentIssue false

Modeling the Spread of Resistant Nosocomial Pathogens in an Intensive-Care Unit

Published online by Cambridge University Press:  02 January 2015

Véronique Sébille*
Affiliation:
Unité de Recherche “Epidémiologie et Sciences de l'Information” (INSERM U444), Institut Fédératif Saint-Antoine de Recherche sur la Santé (ISARS), Paris, France
Sylvie Chevret
Affiliation:
Unité de Recherche “Epidémiologie et Sciences de l'Information” (INSERM U444), Institut Fédératif Saint-Antoine de Recherche sur la Santé (ISARS), Paris, France Département de Biostatistique et Informatique Médicale, Hôpital Saint-Louis, Paris, France
Alain-Jacques Valleron
Affiliation:
Unité de Recherche “Epidémiologie et Sciences de l'Information” (INSERM U444), Institut Fédératif Saint-Antoine de Recherche sur la Santé (ISARS), Paris, France
*
Unité de Recherche Epidémiologie et Sciences de l'Information (INSERM U444), Institut Fédératif Saint-Antoine de Recherche sur la Santé (ISARS), 27, rue Chaligny, 75571 Paris Cedex 12, France

Abstract

Objectives:

To show the value of mathematical modeling in simulating the spread of nosocomial pathogens in an intensive-care unit (ICU), to provide a framework for listing available knowledge; to predict the benefits of various control measures; and to supplement the epidemiological assessment of these measures.

Design:

Simulated outbreak of a nosocomial pathogen in an ICU, based on a deterministic compartmental model describing both person-to-person spread and indirect spread between patients through staff members.

Interventions:

Simulation of three typical colonization control measures: effective handwashing compliance among staff members, ICU antimicrobial policy, and curtailing ICU admission of colonized patients.

Results:

In controlling colonization, effective handwashing compliance reduced staff member colonization, but only moderately limited patient colonization unless the ICU was isolated strictly by curtailing the admission of colonized patients. The impact of antibiotic policy was very slight.

Conclusions:

In the field of nosocomial infection, mathematical modeling appears to be a valuable tool that can be used to evaluate the magnitude of the expected effects of control strategies and to guide the selection of the best randomized clinical trials to pursue.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Emmerson, M. Nosocomial staphylococcal outbreaks. Scand J Infect Dis 1994;(suppl 93):4754.Google Scholar
2.Murray, BE. Can antibiotic resistance be controlled? N Engl J Med 1994;330:12291230.Google Scholar
3.Travis, J. Reviving the antibiotic miracle? Science 1994;264:360362.Google Scholar
4.Tomasz, A. Multiple-antibiotic-resistant pathogenic bacteria. N Engl J Med 1994;330:12471251.Google Scholar
5.Muder, R, Brennen, C, Wagener, MM, et al. Methicillin-resistant staphylococcal colonization and infection in a long-term care facility. Ann Intern Med 1991;114:107112.Google Scholar
6.Brumfitt, W, Hamilton-Miller, J. Methicillin-resistant Staphylococcus aureus. N Engl J Med 1989;320:11881196.Google Scholar
7.Péchère, JC. Antibiotic resistance is selected primarily in our patients. Infect Control Hosp Epidemiol 1994;15:472477.Google Scholar
8.Fischl, MA, Uttamchandani, RB, Daikos, GL, et al. An outbreak of tuberculosis caused by multiple-drug-resistant tubercle bacilli among patients with HIV infection. Ann Intern Med 1992;117:177183.Google Scholar
9.Maki, DG. Risk factors for nosocomial infection in intensive care. Arch Intern Med 1989;149:3035.Google Scholar
10.Cohen, ML. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 1992;257:10501055.Google Scholar
11.Vasquez, JA, Sanchez, V, Dmuchowski, C, Dembry, LM, Sobel, JD, Zervos, MJ. Nosocomial acquisition of Candida albicans: an epidemiologic study. J Infect Dis 1993;168:195201.Google Scholar
12.Handwerger, S, Raucher, B, Altarac, D, et al. Nosocomial outbreak due to Enterococcus faecium highly resistant to van-comycin, penicillin and gentamicin. Clin Infect Dis 1993;16:750755.Google Scholar
13.Bercault, N, Poisson, DM, Martin, P, Garnaud, D, Borderon, E, Gueveler, C. Résistance à la méthicilline des souches de Staphylococcus aureus en fonction de la durée d'hospitalisation. Réan Urg 1993;2:366371.Google Scholar
14.Rhinehart, E, Smith, NE, Wennersten, C, et al. Rapid dissemination of β-lactamase producing, aminoglycoside-resistant Enterococcus faecalis among patients and staff on infant-toddler surgical ward. N Engl J Med 1990;323:18141818.Google Scholar
15.Reboli, AC, John, JF, Platt, CG, Cantey, JR. Methicillin-resistant Staphylococcus aureus outbreak at a Veterans' Affairs medical center: importance of carriage of the organism by hospital personnel. Infect Control Hosp Epidemiol 1990;11:291296.Google Scholar
16.Pearson, ML, Jereb, JA, Frieden, TR, et al. Nosocomial transmission of multidrug-resistant Mycobacterium tuberculosis. Ann Intern Med 1992;117:191196.Google Scholar
17.Bauer, TM, Ofner, E, Just, HM, Just, H, Daschner, FD. An epidemiological study assessing the relative importance of airborne and direct contact transmission of microorganisms in a medical intensive care unit. J Hosp Infect 1990;15:301309.Google Scholar
18.Bédos, JP, Chevret, S, Chastang, Cl, Geslin, P, Régnier, B, the French Cooperative Pneumococcus Study Group. Epidemiological features of and risk factors for infection by Streptococcus pneumoniae strains with diminished susceptibility to penicilllin: findings of a French survey. Clin Infect Dis 1996;22:6372.Google Scholar
19.Cometta, A, Calandra, T, Bille, J, Glauser, MP. Escherichia coli resistant to fluoroquinolones in patients with cancer and neu-tropenia. N Engl J Med 1994;330:12401241.Google Scholar
20.Urban, C, Go, E, Mariano, N, et al. Effect of sulbactam on infections caused by imipenem-resistant Acinetobacter calcoaceticus biotype anitratus. J Infect Dis 1993;167:448451.Google Scholar
21.Emmi, V, Mencherini, S, Barzaghi, N, Capra Marzani, F, Sforzini, I, Braschi, A. Colonization and infection by Candida spp. in non-neutropenic critical ill patients. Intensive Care Med 1994; 20(suppl 2):115S.Google Scholar
22.Mulligan, ME, Murray-Leisure, KA, Ribner, BS, et al. Methicillin-resistant Staphylococcus aureus: a consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am J Med 1993;94:313328.Google Scholar
23.Pear, SM, Williamson, TH, Bettin, KM, Gerding, DN, Galgiani, JN. Decrease in nosocomial Clostridium difficile associated diarrhea by restricting clindamycin use. Ann Intern Med 1994;120:272277.Google Scholar
24.Klein, BS, Perloff, WH, Maki, DG. Reduction of nosocomial infection during pediatric intensive care by protective isolation. N Engl J Med 1989;320:17141721.Google Scholar
25.Doebbeling, BN, Stanley, GL, Sheetz, CT, et al. Comparative efficacy of alternative hand-washing agents in reducing nosocomial infection in intensive care units. N Engl J Med 1992;327:8893.Google Scholar
26.Nyström, B. Impact of handwashing on mortality in intensive care: examination of the evidence. Infect Control Hosp Epidemiol 1994;15:435436.Google Scholar
27.Charpak, Y, Bléry, C, Chastang, Cl. Designing a study for evaluating a protocol for the selective performance of preoperative tests. Stat Med 1987;6:813822.Google Scholar
28.Macken, CA, Levin, SA, Waldstätter, R. The dynamics of bacteria-plasmid systems. J Math Biol 1994;32:123145.Google Scholar
29.Lenski, RE, Hatting, SE. Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics. J Theor Biol 1986;122:8393.Google Scholar
30.Krus, VP, Rvachev, LA. The mathematical theory of epidemics: a study of the evolution of resistance in microorganisms. Advances in Applied Probability 1971;3:206208.Google Scholar
31.Massad, E, Lundberg, S, Hyung, MY. Modeling and simulating the evolution of resistance against antibiotics. Int J Biomed Comput 1993;33:6581.Google Scholar
32.Ackerman, E, Zhuo, Z, Altmann, M, et al. Simulation of stochastic micropopulation models—I. The SUMMERS simulation shell. Comput Biol Med 1993;23:177198.Google Scholar
33.Peterson, D, Gatewood, L, Zhuo, Z, Yang, JJ, Seaholm, S, Ackerman, E. Simulation of stochastic micropopulation models—II. VESPERS: epidemiological model. Comput Biol Med 1993;23:199213.Google Scholar
34.Bradley, JS, Connor, JD. Ceftriaxone failure in meningitis caused by Streptococcus pneumoniae with reduced susceptibility to β-lactam antibiotics. Pediatr Infect Dis 1991;10:871873.Google Scholar
35.Kauffman, CA, Terpenning, MS, He, X, et al. Attempts to eradicate methicillin-resistant Staphylococcus aureus from a long-term-care facility with the use of mupirocin ointment. Am J Med 1993;94:371378.Google Scholar
36.Sanchez, M, Onoro, JJ, Cambronero, JA, Rogero, S, Daguerre, M, De la Fuente, E. Is SDD contraindicated in ICUs with endemic methicillin-resistant Staph. aureus (MRSA)? Intensive Care Med 1994;20(suppl 2):122S.Google Scholar
37.Barbut, F, Soulier, A, Ollivier, JM, Blons, H, Lienhart, A, Petit, JC. Prevention of transmission of extended-spectrum β-lactamase Enterobacteriaceae (ESBLE) in surgical ICU by nursing reorganization. Med Mal Inf 1994;24:698704.Google Scholar
38.Albert, RK, Condie, F. Hand-washing patterns in medical intensive care unit. N Engl J Med 1981;304:14651466.Google Scholar
39.Widmer, AF. Infection control and prevention strategies in the ICU. Intensive Care Med 1994;20(suppl 4):7S11S.Google Scholar
40.Vincent, JL, Bihari, DJ, Suter, PM, et al. The prevalence of noso-comial infection in ICUs in Europe. Results of the European Prevalence of Infection in intensive (EPIC) study. JAMA 1995;274:639644.Google Scholar
41.Getchell-White, SI, Donowitz, LG, Gröschel, DH. The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. Infect Control Hosp Epidemiol 1989;10:402497.Google Scholar