Skip to main content Accessibility help

The Impact of a Computerized Clinical Decision Support Tool on Inappropriate Clostridium difficile Testing

  • Duncan R. White (a1), Keith W. Hamilton (a1), David A. Pegues (a1), Asaf Hanish (a2) and Craig A. Umscheid (a1) (a2) (a3) (a4) (a5) (a6)...



To evaluate the effectiveness of a computerized clinical decision support intervention aimed at reducing inappropriate Clostridium difficile testing


Retrospective cohort study


University of Pennsylvania Health System, comprised of 3 large tertiary-care hospitals


All adult patients admitted over a 2-year period


Providers were required to use an order set integrated into a commercial electronic health record to order C. difficile toxin testing. The order set identified patients who had received laxatives within the previous 36 hours and displayed a message asking providers to consider stopping laxatives and reassessing in 24 hours prior to ordering C. difficile testing. Providers had the option to continue or discontinue laxatives and to proceed with or forgo testing. The primary endpoint was the change in inappropriate C. difficile testing, as measured by the number of patients who had C. difficile testing ordered while receiving laxatives.


Compared to the 1-year baseline period, the intervention resulted in a decrease in the proportion of inappropriate C. difficile testing (29.6% vs 27.3%; P=.02). The intervention was associated with an increase in the number of patients who had laxatives discontinued and did not undergo C. difficile testing (5.8% vs 46.4%; P<.01) and who had their laxatives discontinued and underwent testing (5.4% vs 35.2%; P<.01). We observed a nonsignificant increase in the proportion of patients with C. difficile related complications (5.0% vs 8.9%; P=.11).


A C. difficile order set was successful in decreasing inappropriate C. difficile testing and improving the timely discontinuation of laxatives.

Infect Control Hosp Epidemiol 2017;38:1204–1208


Corresponding author

Address correspondence to Craig A. Umscheid, MD, MSCE, Penn Medicine, Perelman Center for Advanced Medicine, South Pavilion, 6th Floor, Office 623, 3400 Civic Center Boulevard, Philadelphia, PA 19104 (


Hide All

PREVIOUS PRESENTATIONS: These data were presented as a poster at the Society of Hospital Medicine Annual Meeting on March 30, 2015, in National Harbor, Maryland, and at the 8th Annual Mid-Atlantic Healthcare Informatics Symposium, October 23, 2015, Philadelphia, Pennsylvania.



Hide All
1. Magill, SS, Hellinger, W, Cohen, J, et al. Prevalence of healthcare-associated infections in acute care hospitals in Jacksonville, Florida. Infect Control Hosp Epidemiol 2012;33:283291.
2. Lee, GC, Reveles, KR, Attridge, RT, et al. Outpatient antibiotic prescribing in the United States: 2000 to 2010. BMC Medicine 2014;12:96.
3. McDonald, LC, Owings, M, Jernigan, DB. Clostridium difficile infection in patients discharged from US short-stay hospitals. EID 2006;12:409415.
4. Dubberke, ER, Olsen, MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis 2012;55:S88S92.
5. Lessa, FC, Mu, Y, Bamberg, W, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med 2015;372:825834.
6. Alasmari, F, Seiler, SM, Hink, T, Burnham, CD, Dubberke, ER. Prevelance and risk factor for asymptomatic Clostridium difficile carriage. Clin Infect Dis 2014;59:216222.
7. Guerrero, DM, Becker, JC, Eckstein, EC, et al. Asymptomatic carriage of toxigenic Clostridium difficile by hospitalized patients. J Hosp Infect 2013;85:155158.
8. Leekha, S, Aronhalt, KC, Sloan, LM, Patel, R, Orenstein, R. Asymptomatic Clostridium difficile colonization in a tertiary care hospital: admission prevalence and risk factors. Am J Infect Control 2013;41:390393.
9. Kelly, SG, Yarrington, M, Zembower, TR, et al. Inappropriate Clostridium difficile testing and consequent overtreatment and inaccurate publicly reported metrics. Infect Control Hosp Epidemiol 2016;37:13951400.
10. Bartsch, SM, Umscheid, CA, Nachamkin, I, Hamilton, K, Lee, BY. Comparing the economic and health benefits of different approaches to diagnosing Clostridium difficile infection. Clin Microbiol Infect 2015;21(1):77.e1-9.
11. CDC/NHSN surveillance definitions for specific types of infections. Centers for Disease Control and Prevention website. Published 2016. Accessed July 10, 2017.
12. Multidrug-resistant organism & Clostridium difficile infection (MDRO/CDI) Module. Centers for Disease Control and Prevention website. Published 2016. Accessed July 10, 2017.
13. Ziakas, PD, Zacharioudakis, IM, Zervou, FN, Grigora, C, Pliakos, EE, Mylonakis, E. Asymptomatic carriage of toxigenic C. difficile in long-term care facilities: a meta analysis of prevalence and risk factors. PLOS One 2015;10:e0117195.
Type Description Title
Supplementary materials

White supplementary material
Figure S1

 Unknown (65.6 MB)
65.6 MB
Supplementary materials

White supplementary material
Figure S2

 Unknown (58.2 MB)
58.2 MB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed