Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T20:02:59.711Z Has data issue: false hasContentIssue false

Factors associated with patient-to-healthcare personnel (HCP) and HCP-to-subsequent patient transmission of methicillin-resistant Staphylococcus aureus

Published online by Cambridge University Press:  18 January 2024

Timileyin Y. Adediran
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
Gwen L. Robinson
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
J. Kristie Johnson
Affiliation:
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
Yuanyuan Liang
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
Sarah Bejo
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
Surbhi Leekha
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
David A. Rasko
Affiliation:
Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
O. Colin Stine
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
Anthony D. Harris
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
Kerri A. Thom*
Affiliation:
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
*
Corresponding author: Kerri A. Thom; Email: kthom@som.umaryland.edu

Abstract

Background:

Transient acquisition of methicillin-resistant Staphylococcus aureus (MRSA) on healthcare personnel (HCP) gloves and gowns following patient care has been examined. However, the potential for transmission to the subsequent patient has not been studied. We explored the frequency of MRSA transmission from patient to HCP, and then in separate encounters from contaminated HCP gloves and gowns to a subsequent simulated patient as well as the factors associated with these 2 transmission pathways.

Methods:

We conducted a prospective cohort study with 2 parts. In objective 1, we studied MRSA transmission from random MRSA-positive patients to HCP gloves and gowns after specific routine patient care activities. In objective 2, we simulated subsequent transmission from random HCP gloves and gowns without hand hygiene to the next patient using a manikin proxy.

Results:

For the first objective, among 98 MRSA-positive patients with 333 randomly selected individual patient–HCP interactions, HCP gloves or gowns were contaminated in 54 interactions (16.2%). In a multivariable analysis, performing endotracheal tube care had the greatest odds of glove or gown contamination (OR, 4.06; 95% CI, 1.3–12.6 relative to physical examination). For the second objective, after 147 simulated HCP–patient interactions, the subsequent transmission of MRSA to the manikin proxy occurred 15 times (10.2%).

Conclusion:

After caring for a patient with MRSA, contamination of HCP gloves and gown and transmission to subsequent patients following HCP-patient interactions occurs frequently if contact precautions are not used. Proper infection control practices, including the use of gloves and gown, can prevent this potential subsequent transmission.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Klein, EY, Mojica, N, Jiang, W, et al. Trends in methicillin-resistant Staphylococcus aureus hospitalizations in the United States, 2010–2014. Clin Infect Dis 2017;65:1921–1923.10.1093/cid/cix640CrossRefGoogle ScholarPubMed
Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention website. https://www.cdc.gov/drugresistance/biggest-threats.html. Published 2019. Accessed December 7, 2023.Google Scholar
Blanco, N, O’Hara, LM, Harris, AD. Transmission pathways of multidrug-resistant organisms in the hospital setting: a scoping review. Infect Control Hosp Epidemiol 2019;40:447456.10.1017/ice.2018.359CrossRefGoogle ScholarPubMed
Morgan, DJ, Rogawski, E, Thom, KA, et al. Transfer of multidrug-resistant bacteria to healthcare workers’ gloves and gowns after patient contact increases with environmental contamination. Crit Care Med 2012;40:10451051.10.1097/CCM.0b013e31823bc7c8CrossRefGoogle ScholarPubMed
Roghmann, MC, Johnson, JK, Sorkin, JD, et al. Transmission of MRSA to healthcare personnel gowns and gloves during care of nursing home residents. Infect Control Hosp Epidemiol 2015;36:10501057.10.1017/ice.2015.119CrossRefGoogle ScholarPubMed
Loftus, RW, Koff, MD, Brown, JR, et al. The epidemiology of Staphylococcus aureus transmission in the anesthesia work area. Anesth Analg 2015;120:807818.10.1213/ANE.0b013e3182a8c16aCrossRefGoogle ScholarPubMed
Ben-David, D, Mermel, LA, Parenteau, S. Methicillin-resistant Staphylococcus aureus transmission: the possible importance of unrecognized healthcare worker carriage. Am J Infect Control 2008;36:9397.10.1016/j.ajic.2007.05.013CrossRefGoogle ScholarPubMed
Wilson, AP, Hayman, SFAU, Whitehouse, TFAU, et al. Importance of the environment for patient acquisition of methicillin-resistant Staphylococcus aureus in the intensive care unit: a baseline study. Crit Care Med 2007;35:22752279.10.1097/01.CCM.0000284504.89948.6ECrossRefGoogle ScholarPubMed
Snyder, GM, Thom, KA, Furuno, JP, et al. Detection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on the gowns and gloves of healthcare workers. Infect Control Hosp Epidemiol 2008;29:583589.10.1086/588701CrossRefGoogle ScholarPubMed
O’Hara, L, Calfee, D, Miller, L, et al. Optimizing contact precautions to curb the spread of antibiotic-resistant bacteria in hospitals: a multicenter cohort study to identify patient characteristics and healthcare personnel interactions associated with transmission of MRSA. Clin Infect Dis 2019;69 suppl 3:S171S177.10.1093/cid/ciz621CrossRefGoogle Scholar
Pineles, L, Morgan, DJ, Lydecker, A, et al. Transmission of methicillin-resistant Staphylococcus aureus to healthcare worker gowns and gloves during care of residents in Veterans’ Affairs nursing homes. Am J Infect Control 2017;45:947953.10.1016/j.ajic.2017.03.004CrossRefGoogle ScholarPubMed
Tomas, ME, Kundrapu, S, Thota, P, et al. Contamination of healthcare personnel during removal of personal protective equipment. JAMA Intern Med 2015;175:19041910.10.1001/jamainternmed.2015.4535CrossRefGoogle ScholarPubMed
Krein, SL, Mayer, J, Harrod, M, et al. Identification and characterization of failures in infectious agent transmission precaution practices in hospitals: a qualitative study. JAMA Intern Med 2018;178:10161022.10.1001/jamainternmed.2018.1898CrossRefGoogle ScholarPubMed
Pineles, L, Morgan, DJ, Lydecker, A, et al. Transmission of methicillin-resistant Staphylococcus aureus to healthcare worker gowns and gloves during care of residents in Veterans’ Affairs nursing homes. Am J Infect Control 2017;45:947953.10.1016/j.ajic.2017.03.004CrossRefGoogle ScholarPubMed
O’Hara, LM, Calfee, DP, Miller, LG, et al. Optimizing contact precautions to curb the spread of antibiotic-resistant bacteria in hospitals: a multicenter cohort study to identify patient characteristics and healthcare personnel interactions associated with transmission of methicillin-resistant Staphyococcus aureus . Clin Infect Dis 2019;69:S171S177.10.1093/cid/ciz621CrossRefGoogle Scholar
Jackson, SS, Thom, KA, Magder, LS, et al. Patient contact is the main risk factor for vancomycin-resistant Enterococcus contamination of healthcare workers’ gloves and gowns in the intensive care unit. Infect Control Hosp Epidemiol 2018;39:10631067.10.1017/ice.2018.160CrossRefGoogle ScholarPubMed
O’Hara, LM, Nguyen, MH, Calfee, DP, et al. Risk factors for transmission of carbapenem-resistant Enterobacterales to healthcare personnel gloves and gowns in the USA. J Hosp Infect 2021;109:5864.10.1016/j.jhin.2020.12.012CrossRefGoogle ScholarPubMed
M100 Performance Standards for Antimicrobial Susceptibility Testing An Informational Supplement for Global Application Developed through the Clinical and Laboratory Standards Institute Consensus Process . Clinical Standards Institute website. www.clsi.org. Accessed December 7, 2023.Google Scholar