Skip to main content Accessibility help
×
Home

Clostridium difficile-Associated Disease in Patients in a Small Rural Hospital

  • Jennifer L. Kuntz (a1), Joseph E. Cavanaugh (a2), Laura K. Becker (a2), Melissa A. Ward (a3), Dianna M. Appelgate (a3), Loreen A. Herwaldt (a1) (a3) (a4) and Philip M. Polgreen (a1) (a4)...

Abstract

Objective.

To determine the risk factors for Clostridium difficile–associated disease (CDAD) in a 25-bed rural hospital and to compare antimicrobial use ratios at the study hospital with those at a large academic medical center.

Design.

Case-control study.

Setting.

A 25-bed rural hospital in Iowa during the period from August 2002 through January 2005.

Patients.

A total of 17 case patients with CDAD and 34 control patients matched for age (ie, within 10 years of the case patient's age), sex, and admission date (ie, within 2 weeks of the case patient's admission date).

Methods.

Retrospective medical record review was performed to obtain data on antimicrobial exposures during the 6 weeks before hospital admission for both case and control patients. Exact conditional logistic regression was used for univariable and multivariable analyses. Antimicrobial use ratios were calculated to compare the rates of antimicrobial use for case and control patients at the study hospital with the rates for patients evaluated in a study of CDAD at a nearly 700-bed teaching hospital.

Results.

Case patients had a larger cumulative number of days of antimicrobial use (P = .004), and they received a larger total number of antimicrobial agents during hospitalization (P = .001). Antimicrobial use ratios were higher for both case and control patients at the smaller hospital, compared with the larger hospital.

Conclusions.

CDAD at a small rural hospital was not associated with exposure to the antimicrobial classes that are typically associated with CDAD, but was instead related to the total number of antimicrobials used to treat patients. The rate of antimicrobial use for case and control patients was about 40% higher at the small rural hospital, compared with the corresponding rates at a large academic medical center.

Copyright

Corresponding author

University of Iowa Department of Internal Medicine, 200 Hawkins Drive, Iowa City, IA 52242 (philip-polgreen@uiowa.edu)

References

Hide All
1.Gerding, DN, Olson, MM, Peterson, LR, et al. Clostridium difficile-associated diarrhea and colitis in adults: a prospective case-controlled epidemiologic study. Arch Intern Med 1986;146:95100.
2.Fekety, R, Shah, AB. Diagnosis and treatment of Clostridium difficile colitis. JAMA 1993;269:7175.
3.McFarland, LV, Mulligan, MA, Kwok, RY, Stamm, WE. Nosocomial acquisition of Clostridium difficile infection. N Engl J Med 1989;320:204210.
4.Johnson, S, Clabots, CR, Linn, FV, Olson, MM, Peterson, LR, Gerding, DN. Nosocomial Clostridium difficile colonisation and disease. Lancet 1990;336:97100.
5.Muto, CA, Pokrywka, M, Shitt, K, et al. A large outbreak of Clostridium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increases fluoroquinolone use. Infect Control Hosp Epidemiol 2005;26:273280.
6.Harbarth, S, Samore, MH, Carmeli, Y. Antibiotic prophylaxis and the risk of Clostridium difficile-associated diarrhoea. J Hosp Infect 2001;48:9397.
7.Yip, C, Loeb, M, Salama, A, Moss, L, Olde, J. Quinolone use as a risk factor for nosocomial Clostridium difficile-associated diarrhea. Infect Control Hosp Epidemiol 2001;22:572575.
8.Polgreen, PM, Diekema, DJ, Appelgate, DM, et al. Risk factors for Clostridium difficile–associated disease (CDAD) at a midwestern teaching hospital. In: Program and abstracts of the 16th Annual Scientific Meeting of the Society for Hospital Epidemiology of America;Chicago, IL;March 18-24, 2006. Abstract 178.
9.McDonald, LC, Coignard, B, Dubberke, E, et al. Recommendations for surveillance of Clostridium difficile–associated disease. Infect Control Hosp Epidemiol 2007;28:140145.
10.Sohn, S, Climo, M, Diekema, D, et al. Varying rates of Clostridium difficile-associated diarrhea at prevention epicenter hospitals. Infect Control Hosp Epidemiol 2005;26:672675.
11.Polgreen, PM, Chen, YY, Cavanaugh, JE, et al. An outbreak of severe Clostridium difficile-associated disease possibly related to inappropriate antimicrobial therapy for community-acquired pneumonia. Infect Control Hosp Epidemiol 2007;28:212214.
12.Stevenson, KB, Barbera, J, Moore, JW, Samore, M, Houck, P. Understanding keys to successful implementation of electronic decision support in rural hospitals: analysis of a pilot study for antimicrobial prescribing Am J Med Qual 2005;20:313318.
13.Stevenson, KB, Samore, M, Barbera, J, et al. Pharmacist involvement in antimicrobial use at rural community hospitals in four Western states. Am J Health Syst Pharm 2004;61:787792.
14.Dickerson, LM, Mainous, AG III, Caerk, PJ. The pharmacist's role in promoting optimal antimicrobial use. Pharmacotherapy 2000;20:711723.
15.Polgreen, PM, Beekmann, SE, Chen, YY, et al. Epidemiology of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus in a rural state. Infect Control Hosp Epidemiol 2006;27:252.
16.Stevenson, KB, Searle, K, Stoddard, GJ, Samore, MH. Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci in rural communities, Western United States. Emerg Infect Dis 2005;11:895903.

Clostridium difficile-Associated Disease in Patients in a Small Rural Hospital

  • Jennifer L. Kuntz (a1), Joseph E. Cavanaugh (a2), Laura K. Becker (a2), Melissa A. Ward (a3), Dianna M. Appelgate (a3), Loreen A. Herwaldt (a1) (a3) (a4) and Philip M. Polgreen (a1) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed