Skip to main content Accessibility help
×
×
Home

Central Line–Associated Bloodstream Infections in Neonates with Gastrointestinal Conditions: Developing a Candidate Definition for Mucosal Barrier Injury Bloodstream Infections

  • Susan E. Coffin (a1) (a2), Sarah B. Klieger (a1), Christopher Duggan (a3) (a4), W. Charles Huskins (a5), Aaron M. Milstone (a6), Gail Potter-Bynoe (a7), Bram Raphael (a3) (a4), Thomas J. Sandora (a4) (a7) (a8), Xiaoyan Song (a9), Danielle M. Zerr (a10) and Pediatric Prevention EpiCenter Consortium (a4) (a7) (a8) (a11)...

Abstract

Objective.

To develop a candidate definition for central line–associated bloodstream infection (CLABSI) in neonates with presumed mucosal barrier injury due to gastrointestinal (MBI-GI) conditions and to evaluate epidemiology and microbiology of MBI-GI CLABSI in infants

Design.

Multicenter retrospective cohort study.

Setting.

Neonatal intensive care units from 14 US children’s hospitals and pediatric facilities.

Methods.

A multidisciplinary focus group developed a candidate MBI-GI CLABSI definition based on presence of an MBI-GI condition, parenteral nutrition (PN) exposure, and an eligible enteric organism. CLABSI surveillance data from participating hospitals were supplemented by chart review to identify MBI-GI conditions and PN exposure.

Results.

During 2009–2012, 410 CLABSIs occurred in 376 infants. MBI-GI conditions and PN exposure occurred in 149 (40%) and 324 (86%) of these 376 neonates, respectively. The distribution of pathogens was similar among neonates with versus without MBI-GI conditions and PN exposure. Fifty-nine (16%) of the 376 initial CLABSI episodes met the candidate MBI-GI CLABSI definition. Subsequent versus initial CLABSIs were more likely to be caused by an enteric organism (22 of 34 [65%] vs 151 of 376 [40%]; P = .009) and to meet the candidate MBI-GI CLABSI definition (19 of 34 [56%] vs 59 of 376 [16%]; P < .01).

Conclusions.

While MBI-GI conditions and PN exposure were common, only 16% of initial CLABSIs met the candidate definition of MBI-GI CLABSI. The high proportion of MBI-GI CLABSIs among subsequent infections suggests that infants with MBI-GI CLABSI should be a population targeted for further surveillance and interventional research.

Infect Control Hosp Epidemiol 2014;35(11):1391–1399

Copyright

Corresponding author

Division of Infectious Diseases, Children’s Hospital of Philadelphia, 3535 Market Street, Suite 1579, Philadelphia, PA 19104 (coffin@email.chop.edu).

References

Hide All
1. Dudeck, MA, Horan, T, Peterson, KD, et al. National Healthcare Safety Network report, data summary for 2011, device-associated module. Am J Infect Control 2013;41(4):286300. doi:10.1016/j.ajic.2013.01.002.
2. Miller, MR, Griswold, M, Harris, JM, et al. Decreasing PICU catheter-associated bloodstream infections: NACHRI’s quality transformation efforts. Pediatrics 2010;125(2):206213. doi:10.1542/peds.2009–1382.
3. Wheeler, DS, Giaccone, MJ, Hutchinson, N, et al. A hospital-wide quality-improvement collaborative to reduce catheter-associated bloodstream infections. Pediatrics 2011;128(4):e995–e1007. doi:10.1542/peds.2010–2601.
4. Bizzarro, MJ, Sabo, B, Noonan, M, Bonfiglio, MP, Northrup, V, Diefenbach, K. A quality improvement initiative to reduce central line–associated bloodstream infections in a neonatal intensive care unit. Infect Control Hosp Epidemiol 2010;31(3):241248. doi:10.1086/650448.
5. Schulman, J, Stricof, R, Stevens, TP, et al. Statewide NICU central-line-associated bloodstream infection rates decline after bundles and checklists. Pediatrics 2011;127(3):436444. doi:10.1542/peds.2010–2873.
6. Steinberg, JP, Robichaux, C, Tejedor, SC, Reyes, MD, Jacob, JT. Distribution of pathogens in central line–associated bloodstream infections among patients with and without neutropenia following chemotherapy: evidence for a proposed modification to the current surveillance definition. Infect Control Hosp Epidemiol 2013;34(2):171175. doi:10.1086/669082.
7. Fraser, TG, Gordon, SM. CLABSI rates in immunocompromised patients: a valuable patient centered outcome? Clin Infect Dis 2011;52(12):14461450. doi:10.1093/cid/cir200.
8. Beekmann, SE, Diekema, DJ, Huskins, WC, et al. Diagnosing and reporting of central line–associated bloodstream infections. Infect Control Hosp Epidemiol 2012;33(9):875882. doi:10.1086/667379.
9. Sexton, DJ, Chen, LF, Anderson, DJ. Current definitions of central line–associated bloodstream infection: is the emperor wearing clothes? Infect Control Hosp Epidemiol 2010;31(12):12861289. doi:10.1086/657583.
10. Lukenbill, J, Rybicki, L, Sekeres, MA, et al. Defining incidence, risk factors, and impact on survival of central line-associated blood stream infections following hematopoietic cell transplantation in acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant 2013;19(5):720724. doi:10.1016/j.bbmt.2013.01.022.
11. DiGiorgio, MJ, Fatica, C, Oden, M, et al. Development of a modified surveillance definition of central line–associated bloodstream infections for patients with hematologic malignancies. Infect Control Hosp Epidemiol 2012;33(9):865868. doi:10.1086/667380.
12. See, I, Iwamoto, M, Allen-Bridson, KT, Horan, T, Magill, SS, Thompson, ND. Mucosal barrier injury laboratory-confirmed bloodstream infection: results from a field test of a new National Healthcare Safety Network definition. Infect Control Hosp Epidemiol 2013;34(8):769776. doi:10.1086/671281.
13. Cole, CR, Frem, JC, Schmotzer, B, et al. The rate of bloodstream infection is high in infants with short bowel syndrome. J Pediatr 2010;156:941947.
14. Centers for Disease Control and Prevention (CDC). 17 CDC NHSN surveillance definitions. Atlanta: CDC, 2012.
15. Squires, RH, Duggan, C, Teitelbaum, DH, et al. Natural history of pediatric intestinal failure: initial report from the pediatric intestinal failure consortium. J Pediatr 2012;161(4):723728.e2. doi:10.1016/j.jpeds.2012.03.062.
16. Graham, PL III, Begg, MD, Larson, E, Della-Latta, P, Allen, A, Saiman, L. Risk factors for late onset gram-negative sepsis in low birth weight infants hospitalized in the neonatal intensive care unit. Pediatr Infect Dis J 2006;25(2):113117. doi:10.1097/01.inf.0000199310.52875.10.
17. Niedner, MF, Huskins, WC, Colantuoni, E, et al. Epidemiology of central line–associated bloodstream infections in the pediatric intensive care unit. Infect Control Hosp Epidemiol 2011;32(12):12001208. doi:10.1086/662621.
18. Blanchard, AC, Fortin, E, Rocher, I, et al. Central line–associated bloodstream infection in neonatal intensive care units. Infect Control Hosp Epidemiol 2013;34(11):11671173. doi:10.1086/673464.
19. Advani, S, Reich, NG, Sengupta, A, Gosey, L, Milstone, AM. Central line-associated bloodstream infection in hospitalized children with peripherally inserted central venous catheters: extending risk analyses outside the intensive care unit. Clin Infect Dis 2013;52(9):11081115. doi:10.1093/cid/cir145.
20. Hocevar, SN, Edwards, JR, Horan, TC, Morrell, GOC, Iwamoto, M, Lessa, FC. Device-associated infections among neonatal intensive care unit patients: incidence and associated pathogens reported to the National Healthcare Safety Network, 2006–2008. Infect Control Hosp Epidemiol 2012;33(12):12001206. doi:10.1086/668425.
21. MacFie, J, Reddy, BS, Gatt, M, Jain, PK, Sowdi, R, Mitchell, CJ. Bacterial translocation studied in 927 patients over 13 years. Br J Surg 2005;93(1):8793. doi:10.1002/bjs.5184.
22. MacFie, J, O’Boyle, C, Mitchel, CJ, Buckley, PM, Johnstone, D, Sudworth, P. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut 1999;45:223228.
23. O’Boyle, C, MacFie, J, Mitchel, CJ, Johnstone, D, Sagar, PM, Sedman, AB. Microbiology of bacterial translocation in humans. Gut 1998;42:2935.
24. Taur, Y, Xavier, JB, Lipuma, L, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2012;55(7):905914. doi:10.1093/cid/cis580.
25. Milisavljevic, V, Garg, M, Vuletic, I, et al. Prospective assessment of the gastroesophageal microbiome in VLBW neonates. BMC Pediatr 2013;13(1):11. doi:10.1371/journal.pbio.0050177.
26. Cowan, ME, Frost, MR. A comparison between a detergent baby bath additive and baby soap on the skin flora of neonates. J Hosp Infect 1986;7:9195.
27. Polin, RA, Denson, S, Brady, MT; Committee on Fetus and Newborn; Committee on Infectious Diseases. Strategies for prevention of health care-associated infections in the NICU. Pediatrics 2012;129(4):e1085–e1093. doi:10.1542/peds.2012–0145.
28. Hull, MA, Jones, BA, Zurakowski, D, et al. Low serum citrulline concentration correlates with catheter-related bloodstream infections in children with intestinal failure. JPEN J Parenter Enteral Nutr 2011;35(2):181187. doi:10.1177/0148607110381406.
29. Ziegler, TR, Luo, M, Estívariz, CF, et al. Detectable serum flagellin and lipopolysaccharide and upregulated anti-flagellin and lipopolysaccharide immunoglobulins in human short bowel syndrome. Am J Physiol Regul Integr Comp Physiol 2008;294(2):R402R410. doi:10.1152/ajpregu.00650.2007.
30. Cole, CR, Hansen, NI, Higgins, R, et al. Bloodstream infections in very low birth weight infants with intestinal failure. J Pediatr 2012;160(1):5459.e2. doi:10.1016/j.jpeds.2011.06.034.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed