Skip to main content Accessibility help
×
Home

Attributable Mortality of Healthcare-Associated Infections Due to Multidrug-Resistant Gram-Negative Bacteria and Methicillin-Resistant Staphylococcus Aureus

  • Richard E. Nelson (a1) (a2), Rachel B. Slayton (a3), Vanessa W. Stevens (a1) (a2), Makoto M. Jones (a1) (a2), Karim Khader (a1) (a2), Michael A. Rubin (a1) (a2), John A. Jernigan (a3) and Matthew H. Samore (a1) (a2)...

Abstract

OBJECTIVE

The purpose of this study was to quantify the effect of multidrug-resistant (MDR) gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA) healthcare-associated infections (HAIs) on mortality following infection, regardless of patient location.

METHODS

We conducted a retrospective cohort study of patients with an inpatient admission in the US Department of Veterans Affairs (VA) system between October 1, 2007, and November 30, 2010. We constructed multivariate log-binomial regressions to assess the impact of a positive culture on mortality in the 30- and 90-day periods following the first positive culture, using a propensity-score–matched subsample.

RESULTS

Patients identified with positive cultures due to MDR Acinetobacter (n=218), MDR Pseudomonas aeruginosa (n=1,026), and MDR Enterobacteriaceae (n=3,498) were propensity-score matched to 14,591 patients without positive cultures due to these organisms. In addition, 3,471 patients with positive cultures due to MRSA were propensity-score matched to 12,499 patients without positive MRSA cultures. Multidrug-resistant gram-negative bacteria were associated with a significantly elevated risk of mortality both for invasive (RR, 2.32; 95% CI, 1.85–2.92) and noninvasive cultures (RR, 1.33; 95% CI, 1.22–1.44) during the 30-day period. Similarly, patients with MRSA HAIs (RR, 2.77; 95% CI, 2.39–3.21) and colonizations (RR, 1.32; 95% CI, 1.22–1.50) had an increased risk of death at 30 days.

CONCLUSIONS

We found that HAIs due to gram-negative bacteria and MRSA conferred significantly elevated 30- and 90-day risks of mortality. This finding held true both for invasive cultures, which are likely to be true infections, and noninvasive infections, which are possibly colonizations.

Infect Control Hosp Epidemiol 2017;38:848–856

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Attributable Mortality of Healthcare-Associated Infections Due to Multidrug-Resistant Gram-Negative Bacteria and Methicillin-Resistant Staphylococcus Aureus
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Attributable Mortality of Healthcare-Associated Infections Due to Multidrug-Resistant Gram-Negative Bacteria and Methicillin-Resistant Staphylococcus Aureus
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Attributable Mortality of Healthcare-Associated Infections Due to Multidrug-Resistant Gram-Negative Bacteria and Methicillin-Resistant Staphylococcus Aureus
      Available formats
      ×

Copyright

Corresponding author

Address correspondence to Richard E. Nelson, PhD, 500 Foothill Blvd, Salt Lake City, UT 84148 (richard.nelson@utah.edu).

References

Hide All
1. Magill, SS, Edwards, JR, Bamberg, W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 2014;370:11981208.
2. Sievert, DM, Ricks, P, Edwards, JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 2013;34:114.
3. Peleg, AY, Hooper, DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 2010;362:18041813.
4. Schweizer, ML, Eber, MR, Laxminarayan, R, et al. Validity of ICD-9-CM coding for identifying incident methicillin-resistant Staphylococcus aureus (MRSA) infections: is MRSA infection coded as a chronic disease? Infect Control Hosp Epidemiol 2011;32:148154.
5. Umscheid, CA, Mitchell, MD, Doshi, JA, Agarwal, R, Williams, K, Brennan, PJ. Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs. Infect Control Hosp Epidemiol 2011;32:101114.
6. Waters, TM, Daniels, MJ, Bazzoli, GJ, et al. Effect of Medicare’s nonpayment for hospital-acquired conditions: lessons for future policy. JAMA Intern Med 2015;175:347354.
7. Abbo, A, Carmeli, Y, Navon-Venezia, S, Siegman-Igra, Y, Schwaber, MJ. Impact of multi-drug-resistant Acinetobacter baumannii on clinical outcomes. Eur J Clin Microbiol Infect Dis 2007;26:793800.
8. Daniels, TL, Deppen, S, Arbogast, PG, Griffin, MR, Schaffner, W, Talbot, TR. Mortality rates associated with multidrug-resistant Acinetobacter baumannii infection in surgical intensive care units. Infect Control Hosp Epidemiol 2008;29:10801083.
9. Grupper, M, Sprecher, H, Mashiach, T, Finkelstein, R. Attributable mortality of nosocomial Acinetobacter bacteremia. Infect Control Hosp Epidemiol 2007;28:293298.
10. Playford, EG, Craig, JC, Iredell, JR. Carbapenem-resistant Acinetobacter baumannii in intensive care unit patients: risk factors for acquisition, infection and their consequences. J Hosp Infect 2007;65:204211.
11. Sunenshine, RH, Wright, MO, Maragakis, LL, et al. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg Infect Dis 2007;13:97103.
12. Neily, J, Mills, PD, Young-Xu, Y, et al. Association between implementation of a medical team training program and surgical mortality. JAMA 2010;304:16931700.
13. Jones, M, DuVall, SL, Spuhl, J, Samore, MH, Nielson, C, Rubin, M. Identification of methicillin-resistant Staphylococcus aureus within the nation’s Veterans Affairs medical centers using natural language processing. BMC Med Inform Decis Mak 2012;12:34.
14. Horan, TC, Andrus, M, Dudeck, MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008;36:309332.
15. Branch-Elliman, W, Strymish, J, Gupta, K. Development and validation of a simple and easy-to-employ electronic algorithm for identifying clinical methicillin-resistant Staphylococcus aureus infection. Infect Control Hosp Epidemiol 2014;35:692698.
16. Gagne, JJ, Glynn, RJ, Avorn, J, Levin, R, Schneeweiss, S. A combined comorbidity score predicted mortality in elderly patients better than existing scores. J Clin Epidemiol 2011;64:749759.
17. Austin, PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res 2011;46:399424.
18. Wolkewitz, M, Beyersmann, J, Gastmeier, P, Schumacher, M. Efficient risk set sampling when a time-dependent exposure is present: matching for time to exposure versus exposure density sampling. Methods Inform Med 2009;48:438443.
19. Eagye, KJ, Kuti, JL, Nicolau, DP. Risk factors and outcomes associated with isolation of meropenem high-level-resistant Pseudomonas aeruginosa . Infect Control Hosp Epidemiol 2009;30:746752.
20. Ababneh, M, Harpe, S, Oinonen, M, Polk, RE. Trends in aminoglycoside use and gentamicin-resistant gram-negative clinical isolates in US academic medical centers: implications for antimicrobial stewardship. Infect Control Hosp Epidemiol 2012;33:594601.
21. Landman, D, Babu, E, Shah, N, et al. Transmission of carbapenem-resistant pathogens in New York City hospitals: progress and frustration. J Antimicrob Chemother 2012;67:14271431.
22. Reddy, T, Chopra, T, Marchaim, D, et al. Trends in antimicrobial resistance of Acinetobacter baumannii isolates from a metropolitan Detroit health system. Antimicrob Agents Chemother 2010;54:22352238.
23. Roberts, RR, Hota, B, Ahmad, I, et al. Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin Infect Dis 2009;49:11751184.
24. Borowsky, SJ, Cowper, DC. Dual use of VA and non-VA primary care. J Gen Intern Med 1999;14:274280.
25. Hynes, DM, Koelling, K, Stroupe, K, et al. Veterans’ access to and use of Medicare and Veterans Affairs health care. Med Care 2007;45:214223.
26. Liu, CF, Bolkan, C, Chan, D, Yano, EM, Rubenstein, LV, Chaney, EF. Dual use of VA and non-VA services among primary care patients with depression. J Gen Intern Med 2009;24:305311.
27. Brooke, BS, Goodney, PP, Kraiss, LW, Gottlieb, DJ, Samore, MH, Finlayson, SR. Readmission destination and risk of mortality after major surgery: an observational cohort study. Lancet 2015;386:884895.
28. Suissa, S. Immortal time bias in pharmaco-epidemiology. Am J Epidemiol 2008;167:492499.
Type Description Title
WORD
Supplementary materials

Nelson supplementary material
Tables S1-S3

 Word (105 KB)
105 KB

Attributable Mortality of Healthcare-Associated Infections Due to Multidrug-Resistant Gram-Negative Bacteria and Methicillin-Resistant Staphylococcus Aureus

  • Richard E. Nelson (a1) (a2), Rachel B. Slayton (a3), Vanessa W. Stevens (a1) (a2), Makoto M. Jones (a1) (a2), Karim Khader (a1) (a2), Michael A. Rubin (a1) (a2), John A. Jernigan (a3) and Matthew H. Samore (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed