Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-03T13:54:03.612Z Has data issue: false hasContentIssue false

Analysis of Epidemic and Endemic Isolates of Xanthomonas maltophilia by Contour-Clamped Homogeneous Electric Field Gel Electrophoresis

Published online by Cambridge University Press:  02 January 2015

Carolyn VanCouwenberghe*
Affiliation:
Division of Nursing, California State University, Sacramento, and the Department of Nursing, University of California, Davis Division of Infectious Disease, University of California, Davis
Stuart Cohen
Affiliation:
Division of Infectious Disease, University of California, Davis
*
Division of Infectious Diseases, Research Facility I, 4815 Second Ave., Sacramento, CA 95817

Abstract

Background:

Xanthomonas maltophilia is increasingly a cause of nosocomial infections. The mode of transmission of this organism is not well known.

Objective:

To investigate clonality of X maltophilia isolates in epidemic and endemic settings.

Methods:

An outbreak of X maltophilia was noted in the Intensive Care Nursery (ICN). Over the ensuing 9 months, hospitalwide isolates of X maltophilia were analyzed using contour-clamped homogeneous electric field (CHEF) gel electrophoresis of chromosomal DNA. This method was compared with the antibiogram for detecting differences and similarities among strains.

Results:

X maltophilia was recovered from 76 sites in 72 patients; 65 isolates from 61 patients and the hands of one nurse were available for analysis. CHEF demonstrated differences between most epidemiologically unrelated strains and similarity between most epidemiologically related strains. Several strains, initially presumed to be related because of temporal and spatial proximity of the patients involved, were determined by CHEF analysis to be independent infections. One pair of isolates whose Xbal CHEF patterns differed by a single band were differentiated clearly by Sspl. There was enough variation in the minimum inhibitory concentrations of selected antibiotics to allow typing of some strains. The antibiogram, however, did not group all of the ICN outbreak isolates with others found to be genetically identical by CHEF and it grouped 39 of 56 isolates with others not genetically the same.

Conclusions:

Although it is a convenient and economical tool, the antibiogram has limitations. Analysis by CHEF should help to elucidate the epidemiological spread of X maltophilia in the hospital.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1994 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ben-Tovim, T Eylan, E, Romano, A, Stein, R Gram-negative bacteria isolated from external eye infections. Infection 1974;2:162165.10.1007/BF01642238CrossRefGoogle ScholarPubMed
2. Elting, L, Bodey, G. Septicemia due to Xunthomonas species and non-aeruginosa Pseudomonas species: increasing incidence of catheter-related infections. Medicine 1990;69:296306.10.1097/00005792-199009000-00003CrossRefGoogle ScholarPubMed
3. Gilardi, G. Infrequently encountered Pseudomonas species causing infection in humans. Ann Intern Med 1972;77:211215.10.7326/0003-4819-77-2-211CrossRefGoogle ScholarPubMed
4. Jang, T, Wang, F, Wang, L, Liu, C, Liu, I. Xanthomonas maltophilia bacteremia: an analysis of 32 cases. J Formosan Med Assoc 1992;91:11701176.Google ScholarPubMed
5. Sarvamangala Devi, J, Venkatesh, A, Shivananda, I? Neonatal infections due to Pseudomonas maltophilia . Indian Adiatrics 1984;21:7274.Google ScholarPubMed
6. Wishart, M, Riley, T Infection with Pseudomonas maltophilia hospital outbreak due to contaminated disinfectant. Med J Austr 1976;2:710712.10.5694/j.1326-5377.1976.tb128238.xCrossRefGoogle ScholarPubMed
7. Bjerke, H, Leyerle, B, Shabot, M. Impact of ICU nosocomial infections on outcome from surgical care. American Surgeon 1991;57:798802.Google ScholarPubMed
8. Elting, L, Khardori, N, Bodey, G, Fainstein, V. Nosocomial infection caused by Xunthomonas maltophiliu: a case-control study of predisposing factors. Infect Control Hosp Epidemiol 1990; 11:134138.10.1086/646136CrossRefGoogle ScholarPubMed
9. Franzetti, F, Cemuschi, M, Esposito, R, Moroni, M. Pseudomonas infections in patients with AIDS and AIDS-related complex. J Intern Med 1992;231:417443.10.1111/j.1365-2796.1992.tb00957.xCrossRefGoogle ScholarPubMed
10. Roilides, E, Butler, K, Husson, R, Mueller, B, Lewis, L, Pizzo, P Pseudomonas infections in children with human immunodeficiency virus infection. Pediatr Infect Dis J 1992; 11:547553.10.1097/00006454-199207000-00008CrossRefGoogle ScholarPubMed
11. Schable, B, Villarino, M, Favero, M, Miller, M. Application of multilocus enzyme electrophoresis to epidemiologic investigations of Xanthomonas maltophilia . Infect Control Hosp Epidemiol 1991;12:163167.10.1086/646310CrossRefGoogle ScholarPubMed
12. Fisher, M, Long, S, Roberts, E, Dunn, J, Balsara, R. Pseudomonas maltophilia bacteremia in children undergoing open heart surgery. JAMA 1981;246:15711574.10.1001/jama.1981.03320140059032CrossRefGoogle ScholarPubMed
13. Vanholder, R, Vanhaecke, E, Ringoir, S. Pseudomonas septicemia due to deficient disinfectant mixing during reuse. Artificial Kidney and Dialysis 1992;15:1924.Google ScholarPubMed
14. Morrison, A, Hoffmann, K, Wenzel, R. Associated mortality and clinical characteristics of nosocomial Pseudomonas maltophilia in a university hospital. J Clin Microbiol 1986:24:5255.10.1128/jcm.24.1.52-55.1986CrossRefGoogle ScholarPubMed
15. Noskin, G, Grohmann, S. Xanthomonas maltophilia bacteremia: an analysis of factors influencing outcome. Infect Dis Clin Pract 1992;1:230236.CrossRefGoogle Scholar
16. Khardori, N, Elting, L, Wong, E, Schable, B, Bodey, G. Nosocomial infections due to Xanthomonas maltophilia (Pseudomonas maltophilia) in patients with cancer. Rev Infect Dis 1990;12:9971003.10.1093/clinids/12.6.997CrossRefGoogle ScholarPubMed
17. Rolston, K, Anaissie, E, Bodey, G. In vitro susceptibility of Pseudomonas species to fifteen antimicrobial agents. J Antimicrob Chemother 1987;19:193196.10.1093/jac/19.2.193CrossRefGoogle ScholarPubMed
18. Casewell, M, Philips, I. Hands as a route of transmission for Klebsiella species. Br Med J 1977;19:13151317.10.1136/bmj.2.6098.1315CrossRefGoogle Scholar
19. Allardet-Servent, A, Bouziges, N, Carles-Nurit, M, Bourg, G, Gouby, A, Ramuz, M. Use of low frequency-cleavage restriction endonucleases for DNA analysis in epidemiological investigations of nosocomial bacterial infections. J Clin Microbiol 1989;27:20572061.10.1128/jcm.27.9.2057-2061.1989CrossRefGoogle ScholarPubMed
20. National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard M7-A3. Villanova, PA National Committee for Clinical Laboratory Standards; 1993.Google Scholar
21. Thrupp, L. Susceptibility testing of antibiotics in liquid media. In: Lorian, V, ed. Antibiotics in Laboratory Medicine. Baltimore. MD: Williams&Wilkins; 1980:73113.Google Scholar
22. Hunter, P Gaston, M. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s Index of Diversity J Clin Microbiol 1988:26:24652466.10.1128/jcm.26.11.2465-2466.1988CrossRefGoogle ScholarPubMed
23. Chen, S, Stroh, E, Wald, K, Jalkh, A. Xanthomonas maltophilia endophthalmitis after implantation of sustained-release ganciclovir. Am J Ophthalmol 1992;114:772773.10.1016/S0002-9394(14)74063-2CrossRefGoogle ScholarPubMed
24. Van den Mooter, M, Swings, J. Numerical analysis of 295 phenotypic features of 266 Xunthomonas strains and related strains and an improved taxonomy of the genus. Znt J Syst Bacteriol 1990;40:348369.CrossRefGoogle Scholar
25. Minah, GH, Rednor, JL, Peterson, DE, Overholser, CD, Depaola, LG, Suzuki, JB. Oral succession of gram-negative bacilli in myelosuppressed cancer patients. J Clin Microbiol 1986;24:210213.10.1128/jcm.24.2.210-213.1986CrossRefGoogle ScholarPubMed
26. Tramont, EC. General or nonspecific host defense mechanisms. In: Mandell, GL, Douglas, RG, Bennett, JE, eds. Principles and Practices of Infectious Diseases. 3rd ed. New York, NY: Churchill Livingstone; 1990:3341.Google Scholar
27. Schable, B, Rhoden, D, Jarvis, W, Miller, J. Prevalence of serotypes of Xanthomonas maltophilia from world-wide sources. Epidemiol Infect 1992;108:337341.10.1017/S0950268800049803CrossRefGoogle ScholarPubMed
28. Eisenstein, B. New molecular techniques for microbial epidemiology and the diagnosis of infectious disease. J Infect Dis 1990;161:595602.CrossRefGoogle Scholar
29. Bingen, E, Denamur, E, Lambert-Zechovsky, N, et al DNA restriction fragment length polymorphism differentiates crossed from independent infections in nosocomial Xunthomonas maltophilia bacteremia. J Clin Microbiol 1991;29:13481350.10.1128/jcm.29.7.1348-1350.1991CrossRefGoogle ScholarPubMed
30. Schwartz, D, Cantor, C. Separation of yeast chromosome-size DNAs by pulsed field gradient gel electrophoresis. Cell 1984;37:6775.10.1016/0092-8674(84)90301-5CrossRefGoogle Scholar
31. McClelland, M, Jones, R, Patel, Y, Nelson, M. Restriction endonuclease for pulsed field mapping of bacterial genomes. Nucleic Acids Research 1987;15:59856005.10.1093/nar/15.15.5985CrossRefGoogle ScholarPubMed
32. Swings, J, De Vos, P, Van den Mooter, M, De Ley, J. Transfer of Pseudomonas maltophilia (Hugh 1981) to the genus Xanthomonas as Xanthomonas maltophilia (Hugh 1981) comb. nov. Int J Syst Bacteriol 1983;33:409413.10.1099/00207713-33-2-409CrossRefGoogle Scholar
33. Grothues, D, Tummler, B. New approaches in genome analysis by pulsed-field gel electrophoresis: application to the analvsis of Pseudomonas species. Mol Microbiol 1991;5:27632776.10.1111/j.1365-2958.1991.tb01985.xCrossRefGoogle Scholar
34. Goering, RV. Molecular epidemiology of nosocomial infection: analysis of chromosomal restriction fragment patterns by pulsed-field gel electrophoresis. Infect Control Hosp Epidemiol 1993;14:595600.CrossRefGoogle ScholarPubMed