Skip to main content Accessibility help

Adenosine Triphosphate Quantification Correlates Poorly with Microbial Contamination of Duodenoscopes

  • Lovisa B. Olafsdottir (a1) (a2), Sharon B. Wright (a1) (a2), Anne Smithey (a1), Riley Heroux (a1), Elizabeth B. Hirsch (a3) (a4), Alice Chen (a1), Benjamin Lane (a1), Mandeep S. Sawhney (a5) and Graham M. Snyder (a1) (a2)...



The aim of this study was to quantify the correlation between adenosine triphosphate (ATP) measurements and bacterial cultures from duodenoscopes for evaluation of contamination following high-level disinfection.


Duodenoscopes used for any intended endoscopic retrograde cholangiopancreatography (ERCP) procedure were included. Microbiologic and ATP data were collected concomitantly and in the same manner from ERCP duodenoscopes.


A high-volume endoscopy unit at a tertiary referral acute-care facility.


Duodenoscopes were sampled for ATP and bacterial contamination in a contemporaneous and highly standardized fashion using a “flush-brush-flush” method for the working channel (WC) and a dry flocked swab for the elevator mechanism (EM). Specimens were processed for any aerobic bacterial growth (colony-forming units, CFU). Growth of CFU>0 and ATP relative light unit (RLU)>0 was considered a contaminated result. Frequency of discord between among WC and EM measurements were calculated using 2×2 contingency tables. The Spearman correlation coefficient was used to calculate the relatedness of bacterial contamination and ATP as continuous measurements.


The Spearman correlation coefficient did not demonstrate significant relatedness between ATP and CFU for either a WC or EM site. Among 390 duodenoscope sampling events, ATP and CFU assessments of contamination were discordant in 82 of 390 WC measurements (21%) and 331 of 390 of EM measurements (84.9%). The EM was frequently and markedly positive by ATP measurement.


ATP measurements correlate poorly with a microbiologic standard assessing duodenoscope contamination, particularly for EM sampling. ATP may reflect biological material other than nonviable aerobic bacteria and may not serve as an adequate marker of bacterial contamination.

Infect Control Hosp Epidemiol 2017;38:678–684


Corresponding author

Address correspondence to Graham Snyder, Mailstop SL-435, 330 Brookline Ave, Boston, MA 02115 (


Hide All

PREVIOUS PRESENTATION: Findings from this study were presented at The Society for Healthcare Epidemiology Spring 2016 Conference in Atlanta, Georgia, on May 19, 2016 (poster no. 530).



Hide All
1. Carbonne, A, Thiolet, JM, Fournier, S, et al. Control of a multi-hospital outbreak of KPC-producing Klebsiella pneumoniae type 2 in France, September to October 2009. Euro Surveill 2010:15.
2. Aumeran, C, Poincloux, L, Souweine, B, et al. Multidrug-resistant Klebsiella pneumoniae outbreak after endoscopic retrograde cholangiopancreatography. Endoscopy 2010;42:895899.
3. Spach, DH, Silverstein, FE, Stamm, WE. Transmission of infection by gastrointestinal endoscopy and bronchoscopy. Ann Intern Med 1993;118:117128.
4. Epstein, L, Hunter, JC, Arwady, MA, et al. New Delhi metallo-β-lactamase-producing carbapenem-resistant Escherichia coli associated with exposure to duodenoscopes. JAMA 2014;312:14471455.
5. Rutala, WA, Weber, DJ. ERCP scopes: What can we do to prevent infections? Infect Control Hosp Epidemiol 2015;36:643648.
6. Rutala, WA, Weber, DJ. Outbreaks of carbapenem-resistant Enterobacteriaceae infections associated with duodenoscopes: What can we do to prevent infections? Am J Infect Control 2016;44:e47e51.
7. Petersen, BT, Chennat, J, Cohen, J, et al. Multisociety guideline on reprocessing flexible GI endoscopes: 2011. Infect Control Hosp Epidemiol 2011;32:527537.
8. Beilenhoff, U, Neumann, CS, Rey, JF, et al. ESGE-ESGENA guideline for quality assurance in reprocessing: microbiological surveillance testing in endoscopy. Endoscopy 2007;39:175181.
9. Interim protocol for healthcare facilities regarding surveillance for bacterial contamination of duodenoscopes after reprocessing. Centers for Disease Control and Prevention website. Published 2015. Accessed June 3, 2016.
10. Turner, DE, Daugherity, EK, Altier, C, Maurer, KJ. Efficacy and limitations of an ATP-based monitoring system. J Am Assoc Lab Anim Sci 2010;49:190195.
11. Amodio, E, Dino, C. Use of ATP bioluminescence for assessing the cleanliness of hospital surfaces: a review of the published literature (1990–2012). J Infect Public Health 2014;7:9298.
12. Leon, MB, Albrecht, JA. Comparison of adenosine triphosphate (ATP) bioluminescence and aerobic plate counts (APC) on plastic cutting boards. Journal of Foodservice 2007;18:145152.
13. Poulis, JA, de Pijper, M, Mossel, DA, Dekkers, PP. Assessment of cleaning and disinfection in the food industry with the rapid ATP-bioluminescence technique combined with the tissue fluid contamination test and a conventional microbiological method. Int J Food Microbiol 1993;20:109116.
14. Batailler, P, Saviuc, P, Picot-Gueraud, R, Bosson, JL, Mallaret, MR. Usefulness of adenosinetriphosphate bioluminescence assay (ATPmetry) for monitoring the reprocessing of endoscopes. Infect Control Hosp Epidemiol 2015;36:14371443.
15. Hansen, D, Benner, D, Hilgenhoner, M, Leisebein, T, Brauksiepe, A, Popp, W. ATP measurement as method to monitor the quality of reprocessing flexible endoscopes. Ger Med Sci 2004;2:Doc04.
16. Ofstead, CL, Wetzler, HP, Doyle, EM, et al. Persistent contamination on colonoscopes and gastroscopes detected by biologic cultures and rapid indicators despite reprocessing performed in accordance with guidelines. Am J Infect Control 2015;43:794801.
17. Alfa, MJ, Olson, N, Murray, BL. Comparison of clinically relevant benchmarks and channel sampling methods used to assess manual cleaning compliance for flexible gastrointestinal endoscopes. Am J Infect Control 2014;42:e1e5.
18. Alfa, MJ, Fatima, I, Olson, N. The adenosine triphosphate test is a rapid and reliable audit tool to assess manual cleaning adequacy of flexible endoscope channels. Am J Infect Control 2013;41:249253.
19. Fushimi, R, Takashina, M, Yoshikawa, H, et al. Comparison of adenosine triphosphate, microbiological load, and residual protein as indicators for assessing the cleanliness of flexible gastrointestinal endoscopes. Am J Infect Control 2013;41:161164.
20. Fernando, G, Collignon, P, Beckingham, W. ATP bioluminescence to validate the decontamination process of gastrointestinal endoscopes. Healthcare Infection 2014;19:5964.
21. Obee, PC, Griffith, CJ, Cooper, RA, Cooke, RP, Bennion, NE, Lewis, M. Real-time monitoring in managing the decontamination of flexible gastrointestinal endoscopes. Am J Infect Control 2005;33:202206.
22. Duodenoscope Disinfect Study. Published 2015. Accessed August 3, 2016.
23. Dawson, BT. Basic and Clinical Biostatistics, 4th ed. New York: Lange Medical Books/McGraw-Hill; 2004. Pp. 306311.
24. Alfa, MJ, Fatima, I, Olson, N. Validation of adenosine triphosphate to audit manual cleaning of flexible endoscope channels. Am J Infect Control 2013;41:245248.
25. Aiken, ZA, Wilson, M, Pratten, J. Evaluation of ATP bioluminescence assays for potential use in a hospital setting. Infect Control Hosp Epidemiol 2011;32:507509.
26. Pajkos, A, Vickery, K, Cossart, Y. Is biofilm accumulation on endoscope tubing a contributor to the failure of cleaning and decontamination? J Hosp Infect 2004;58:224229.
27. Omidbakhsh, N, Ahmadpour, F, Kenny, N. How reliable are ATP bioluminescence meters in assessing decontamination of environmental surfaces in healthcare settings? PLoS One 2014;9:e99951.
28. Frequently asked questions (FAQs) on the interim duodenoscope surveillance protocol. Centers for Disease Control and Prevention website. Published 2015. Accessed February 6, 2017.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed