Skip to main content Accessibility help
×
Home

A Multicenter Intervention to Prevent Catheter-Associated Bloodstream Infections

Published online by Cambridge University Press:  21 June 2016


David K. Warren
Affiliation:
Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
Sara E. Cosgrove
Affiliation:
Department of Public Health and Hygiene, Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland
Daniel J. Diekema
Affiliation:
Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa
Gianna Zuccotti
Affiliation:
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
Michael W. Climo
Affiliation:
Department of Internal Medicine, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia
Maureen K. Bolon
Affiliation:
Department of Internal Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinoi
Jerome I. Tokars
Affiliation:
Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
Gary A. Noskin
Affiliation:
Department of Internal Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinoi
Edward S. Wong
Affiliation:
Department of Internal Medicine, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia
Kent A. Sepkowitz
Affiliation:
Department of Internal Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
Loreen A. Herwaldt
Affiliation:
Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa
Trish M. Perl
Affiliation:
Department of Public Health and Hygiene, Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland
Steven L. Solomon
Affiliation:
Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
Victoria J. Fraser
Affiliation:
Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
Corresponding
E-mail address:

Abstract

Background.

Education-based interventions can reduce the incidence of catheter-associated bloodstream infection. The generalizability of findings from single-center studies is limited.

Objective.

To assess the effect of a multicenter intervention to prevent catheter-associated bloodstream infections.

Design.

An observational study with a planned intervention.

Setting.

Twelve intensive care units and 1 bone marrow transplantation unit at 6 academic medical centers.

Patients.

Patients admitted during the study period.

Intervention.

Updates of written policies, distribution of a 9-page self-study module with accompanying pretest and posttest, didactic lectures, and incorporation into practice of evidence-based guidelines regarding central venous catheter (CVC) insertion and care.

Measurements.

Standard data collection tools and definitions were used to measure the process of care (ie, the proportion of non-tunneled catheters inserted into the femoral vein and the condition of the CVC insertion site dressing for both tunneled and nontunneled catheters) and the incidence of catheter-associated bloodstream infection.

Results.

Between the preintervention period and the postintervention period, the percentage of CVCs inserted into the femoral vein decreased from 12.9% to 9.4% (relative ratio, 0.73; 95% confidence interval [CI], 0.61-0.88); the total proportion of catheter insertion site dressings properly dated increased from 26.6% to 34.4% (relative ratio, 1.29; 95% CI, 1.17-1.42), and the overall rate of catheter-associated bloodstream infections decreased from 11.2 to 8.9 infections per 1,000 catheter-days (relative rate, 0.79; 95% CI, 0.67-0.93). The effect of the intervention varied among individual units.

Conclusions.

An education-based intervention that uses evidence-based practices can be successfully implemented in a diverse group of medical and surgical units and reduce catheter-associated bloodstream infection rates.


Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2006

Access options

Get access to the full version of this content by using one of the access options below.

References

1. National Nosocomial Infections Surveillance (NNIS) System report: data summary from January 1992–June 2001. Issued August 2001. Am J Infect Control 2001; 29:404421.CrossRefGoogle ScholarPubMed
2. Raad, I. Intravascular-catheter–related infections. Lancet 1998; 351:893898.CrossRefGoogle ScholarPubMed
3. Crnich, CJ, Maki, DG. The promise of novel technology for the prevention of intravascular device-related bloodstream infection. I. Pathogenesis and short-term devices. Clin Infect Dis 2002; 34:12321242.CrossRefGoogle ScholarPubMed
4. Darouiche, RO, Raad, II, Heard, SO, et al. A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med 1999; 340:18.CrossRefGoogle ScholarPubMed
5. Heard, SO, Wagle, M, Vijayakumar, E, et al. Influence of triple-lumen central venous catheters coated with chlorhexidine and silver sulfadiazine on the incidence of catheter-related bacteremia. Arch Intern Med 1998; 158:8187.CrossRefGoogle ScholarPubMed
6. Raad, I, Darouiche, R, Dupuis, J, et al. Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections: a randomized, double-blind trial. The Texas Medical Center Catheter Study Group. Ann Intern Med 1997; 127:267274.CrossRefGoogle ScholarPubMed
7. Veenstra, DL, Saint, S, Saha, S, et al. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA 1999; 281:261267.CrossRefGoogle ScholarPubMed
8. Raad, II, Hohn, DC, Gilbreath, BJ, et al. Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 1994; 15:231228.CrossRefGoogle ScholarPubMed
9. Mermel, LA, McCormick, RD, Springman, SR, et al. The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swan-Ganz catheters: a prospective study utilizing molecular subtyping. Am J Med 1991; 91:197S205S.CrossRefGoogle ScholarPubMed
10. Merrer, J, De Jonghe, B, Golliot, F, et al. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA 2001; 286:700707.CrossRefGoogle ScholarPubMed
11. Goetz, AM, Wagener, MM, Miller, JM, et al. Risk of infection due to central venous catheters: effect of site of placement and catheter type. Infect Control Hosp Epidemiol 1998; 19:842845.CrossRefGoogle ScholarPubMed
12. Cobb, DK, High, KP, Sawyer, RG, et al. A controlled trial of scheduled replacement of central venous and pulmonary-artery catheters. N Engl J Med 1992; 327:10621068.CrossRefGoogle ScholarPubMed
13. Cook, D, Randolph, A, Kernerman, P, et al. Central venous catheter replacement strategies: a systematic review of the literature. Crit Care Med 1997; 25:14171424.CrossRefGoogle ScholarPubMed
14. Bingen, E, Barc, MC, Brahimi, N, et al. Randomly amplified polymorphic DNA analysis provides rapid differentiation of methicillin-resistant coagulase-negative staphylococcus bacteremia isolates in pediatric hospital. J Clin Microbiol 1995; 33:16571659.Google Scholar
15. Pratt, RJ, Pellowe, C, Loveday, HP, et al. The Epic Project: developing national evidence-based guidelines for preventing healthcare associated infections. J Hosp Infect 2001; 47:S3S4.CrossRefGoogle ScholarPubMed
16. O'Grady, NP, Alexander, M, Dellinger, EP, et al. Guidelines for the prevention of intravascular catheter–related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep 2002; 51:129.Google ScholarPubMed
17. Parras, F, Ena, J, Bouza, E, et al. Impact of an educational program for the prevention of colonization of intravascular catheters. Infect Control Hosp Epidemiol 1994; 15:239242.CrossRefGoogle Scholar
18. Maas, A, Flament, P, Pardou, A, et al. Central venous catheter–related bacteraemia in critically ill neonates: risk factors and impact of a prevention programme. J Hosp Infect 1998; 40:211224.CrossRefGoogle Scholar
19. Eggimann, P, Harbarth, S, Constantin, MN, et al. Impact of a prevention strategy targeted at vascular-access care on incidence of infections acquired in intensive care. Lancet 2000; 355:18641868.CrossRefGoogle Scholar
20. Sherertz, RJ, Ely, EW, Westbrook, DM, et al. Education of physicians-in-training can decrease the risk for vascular catheter infection. Ann Intern Med 2000; 132:641648.CrossRefGoogle Scholar
21. Coopersmith, CM, Rebmann, TL, Zack, JE, et al. Effect of an education program on decreasing catheter-related bloodstream infections in the surgical intensive care unit. Crit Care Med 2002; 30:5964.CrossRefGoogle ScholarPubMed
22. Warren, DK, Zack, JE, Cox, MJ, et al. An educational intervention to prevent catheter-associated bloodstream infections in a non-teaching, community medical center. Crit Care Med 2003; 31:19591963.CrossRefGoogle Scholar
23. Rosenthal, VD, Guzman, S, Pezzotto, SM, et al. Effect of an infection control program using education and performance feedback on rates of intravascular device–associated bloodstream infections in intensive care units in Argentina. Am J Infect Control 2003; 31:405409.CrossRefGoogle ScholarPubMed
24. Warren, DK, Zack, JE, Mayfield, JL, et al. The effect of an education program on the incidence of central venous catheter–associated bloodstream infection in a medical ICU. Chest 2004; 126:16121618.CrossRefGoogle Scholar
25. Garner, JS, Jarvis, WR, Emori, TG, et al. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988; 16:128140.CrossRefGoogle ScholarPubMed
26. Rosner, B. Fundamentals of Biostatistics. 5th ed. Pacific Grove, CA; Duxbury Press; 2000.Google Scholar
27. Oliver, MJ, Callery, SM, Thorpe, KE, et al. Risk of bacteremia from temporary hemodialysis catheters by site of insertion and duration of use: a prospective study. Kidney Int 2000; 58:25432545.CrossRefGoogle Scholar
28. Seto, WH, Ching, PT, Fung, JP, et al. The role of communication in the alteration of patient-care practices in hospital: a prospective study. J Hosp Infect 1989; 14:2937.CrossRefGoogle ScholarPubMed
29. Seto, WH, Ching, TY, Yuen, KY, et al. The enhancement of infection control in-service education by ward opinion leaders. Am J Infect Control 1991; 19:8691.CrossRefGoogle ScholarPubMed
30. Renaud, B, Brun-Buisson, C. Outcomes of primary and catheter-related bacteremia: a cohort and case-control study in critically ill patients. Am J Respir Crit Care Med 2001; 163:15841590.CrossRefGoogle ScholarPubMed
31. Rello, J, Ochagavia, A, Sabanes, E, et al. Evaluation of outcome of intravenous catheter-related infections in critically ill patients. Am J Respir Crit Care Med 2000; 162:10271030.CrossRefGoogle ScholarPubMed
32. Dimick, JB, Pelz, RK, Consunji, R, et al. Increased resource use associated with catheter-related bloodstream infection in the surgical intensive care unit. Arch Surg 2001; 136:229234.CrossRefGoogle Scholar
33. Digiovine, B, Chenoweth, C, Watts, C, et al. The attributable mortality and costs of primary nosocomial bloodstream infections in the intensive care unit. Am J Respir Crit Care Med 1999; 160:976981.CrossRefGoogle Scholar

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-9fdqb Total loading time: 0.958 Render date: 2020-12-03T20:52:40.276Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 19:58:56 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Multicenter Intervention to Prevent Catheter-Associated Bloodstream Infections
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Multicenter Intervention to Prevent Catheter-Associated Bloodstream Infections
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Multicenter Intervention to Prevent Catheter-Associated Bloodstream Infections
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *