Skip to main content Accessibility help
×
Home

Clinical Outcomes and Healthcare Utilization Related to Multidrug-Resistant Gram-Negative Infections in Community Hospitals

Published online by Cambridge University Press:  11 October 2016

Kristen V. Dicks
Affiliation:
Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina Duke Infection Control Outreach Network, Durham, North Carolina
Deverick J. Anderson
Affiliation:
Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina Duke Infection Control Outreach Network, Durham, North Carolina
Arthur W. Baker
Affiliation:
Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina Duke Infection Control Outreach Network, Durham, North Carolina
Daniel J. Sexton
Affiliation:
Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina Duke Infection Control Outreach Network, Durham, North Carolina
Sarah S. Lewis
Affiliation:
Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina Duke Infection Control Outreach Network, Durham, North Carolina
Corresponding
E-mail address:

Abstract

OBJECTIVE

To evaluate the impact of multidrug-resistant gram-negative rod (MDR-GNR) infections on mortality and healthcare resource utilization in community hospitals.

DESIGN

Two matched case-control analyses.

SETTING

Six community hospitals participating in the Duke Infection Control Outreach Network from January 1, 2010, through December 31, 2012.

PARTICIPANTS

Adult patients admitted to study hospitals during the study period.

METHODS

Patients with MDR-GNR bloodstream and urinary tract infections were compared with 2 groups: (1) patients with infections due to nonMDR-GNR and (2) control patients representative of the nonpsychiatric, non-obstetric hospitalized population. Four outcomes were assessed: mortality, direct cost of hospitalization, length of stay, and 30-day readmission rates. Multivariable regression models were created to estimate the effect of MDR status on each outcome measure.

RESULTS

No mortality difference was seen in either analysis. Patients with MDR-GNR infections had 2.03 higher odds of 30-day readmission compared with patients with nonMDR-GNR infections (95% CI, 1.04–3.97, P=.04). There was no difference in hospital direct costs between patients with MDR-GNR infections and patients with nonMDR-GNR infections. Hospitalizations for patients with MDR-GNR infections cost $5,320.03 more (95% CI, $2,366.02–$8,274.05, P<.001) and resulted in 3.40 extra hospital days (95% CI, 1.41–5.40, P<.001) than hospitalizations for control patients.

CONCLUSIONS

Our study provides novel data regarding the clinical and financial impact of MDR gram-negative bacterial infections in community hospitals. There was no difference in mortality between patients with MDR-GNR infections and patients with nonMDR-GNR infections or control patients.

Infect Control Hosp Epidemiol 2016;1–8

Type
Original Articles
Copyright
© 2016 by The Society for Healthcare Epidemiology of America. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Giske, CG, Monnet, DL, Cars, O, Carmeli, Y, ReAct-Action on Antibiotic Resistance. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother 2008;52:813821.CrossRefGoogle ScholarPubMed
2. Schwaber, MJ, Carmeli, Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother 2007;60:913920.CrossRefGoogle ScholarPubMed
3. de Kraker, MEA, Wolkewitz, M, Davey, PG, et al. Burden of antimicrobial resistance in European hospitals: excess mortality and length of hospital stay associated with bloodstream infections due to Escherichia coli resistant to third-generation cephalosporins. J Antimicrob Chemother 2011;66:398407.CrossRefGoogle ScholarPubMed
4. Rottier, WC, Ammerlaan, HSM, Bonten, MJM. Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae and patient outcome: a meta-analysis. J Antimicrob Chemother 2012;67:13111320.CrossRefGoogle ScholarPubMed
5. Kang, CI, Kim, SH, Park, WB, et al. Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. Antimicrob Agents Chemother 2005;49:760766.CrossRefGoogle ScholarPubMed
6. Peña, C, Gudiol, C, Calatayud, L, et al. Infections due to Escherichia coli producing extended-spectrum beta-lactamase among hospitalised patients: factors influencing mortality. J Hosp Infect 2008;68:116122.CrossRefGoogle ScholarPubMed
7. Hyle, EP, Lipworth, AD, Zaoutis, TE, Nachamkin, I, Bilker, WB, Lautenbach, E. Impact of inadequate initial antimicrobial therapy on mortality in infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae: variability by site of infection. Arch Intern Med 2005;165:13751380.CrossRefGoogle ScholarPubMed
8. Raymond, DP, Pelletier, SJ, Crabtree, TD, Evans, HL, Pruett, TL, Sawyer, RG. Impact of antibiotic-resistant gram-negative bacilli infections on outcome in hospitalized patients. Crit Care Med 2003;31:10351041.CrossRefGoogle ScholarPubMed
9. Gudiol, C, Tubau, F, Calatayud, L, et al. Bacteraemia due to multidrug-resistant gram-negative bacilli in cancer patients: risk factors, antibiotic therapy and outcomes. J Antimicrob Chemother 2011;66:657663.CrossRefGoogle ScholarPubMed
10. Peralta, G, Sánchez, MB, Garrido, JC, et al. Impact of antibiotic resistance and of adequate empirical antibiotic treatment in the prognosis of patients with Escherichia coli bacteraemia. J Antimicrob Chemother 2007;60:855863.CrossRefGoogle ScholarPubMed
11. Thaden, JT, Fowler, VG, Sexton, DJ, Anderson, DJ. Increasing incidence of extended-spectrum beta-lactamase-producing Escherichia coli in community hospitals throughout the southeastern United States. Infect Control Hosp Epidemiol 2016;37:4954.CrossRefGoogle ScholarPubMed
12. Thaden, JT, Lewis, SS, Hazen, KC, et al. Rising rates of carbapenem-resistant Enterobacteriaceae in community hospitals: a mixed-methods review of epidemiology and microbiology practices in a network of community hospitals in the southeastern United States. Infect Control Hosp Epidemiol 2014;35:978983.CrossRefGoogle Scholar
13. Anderson, DJ, Miller, BA, Chen, LF, et al. The network approach for prevention of healthcare-associated infections: long-term effect of participation in the Duke Infection Control Outreach Network. Infect Control Hosp Epidemiol 2011;32:315322.CrossRefGoogle Scholar
14. Magiorakos, AP, Srinivasan, A, Carey, RB, et al. Multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268281.CrossRefGoogle ScholarPubMed
15. Sievert, DM, Ricks, P, Edwards, JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol 2013;34:114.CrossRefGoogle ScholarPubMed
16. Carlson, M, Szatrowski, TP, Peterson, J, Gold, J. Validation of a combined comorbidity index. J Clin Epidemiol 1994;47:12451251.CrossRefGoogle Scholar
17. Lye, DC, Earnest, A, Ling, ML, et al. The impact of multidrug resistance in healthcare-associated and nosocomial gram-negative bacteraemia on mortality and length of stay: cohort study. Clin Microbiol Infect 2012;18:502508.CrossRefGoogle ScholarPubMed
18. Shorr, AF, Micek, ST, Welch, EC, Doherty, JA, Reichley, RM, Kollef, MH. Inappropriate antibiotic therapy in gram-negative sepsis increases hospital length of stay. Crit Care Med 2011;39:4651.CrossRefGoogle ScholarPubMed
19. Micek, ST, Welch, EC, Khan, J, et al. Resistance to empiric antimicrobial treatment predicts outcome in severe sepsis associated with gram-negative bacteremia. J Hosp Med 2011;6:405410.CrossRefGoogle ScholarPubMed
20. Kaye, KS, Harris, AD, Samore, M, Carmeli, Y. The case-case-control study design: addressing the limitations of risk factor studies for antimicrobial resistance. Infect Control Hosp Epidemiol 2005;26:346351.CrossRefGoogle ScholarPubMed
21. Henriksen, DP, Laursen, CB, Jensen, TG, Hallas, J, Pedersen, C, Lassen, AT. Incidence rate of community-acquired sepsis among hospitalized acute medical patients—a population-based survey. Crit Care Med 2015;43:1321.CrossRefGoogle ScholarPubMed
22. Magill, SS, Edwards, JR, Bamberg, W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 2014;370:11981208.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 12
Total number of PDF views: 146 *
View data table for this chart

* Views captured on Cambridge Core between 11th October 2016 - 19th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-r88h9 Total loading time: 0.448 Render date: 2021-01-19T13:00:09.489Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Clinical Outcomes and Healthcare Utilization Related to Multidrug-Resistant Gram-Negative Infections in Community Hospitals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Clinical Outcomes and Healthcare Utilization Related to Multidrug-Resistant Gram-Negative Infections in Community Hospitals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Clinical Outcomes and Healthcare Utilization Related to Multidrug-Resistant Gram-Negative Infections in Community Hospitals
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *