Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-08T06:58:48.790Z Has data issue: false hasContentIssue false

Radio Observations of Giant Extragalactic HII Regions

Published online by Cambridge University Press:  30 March 2016

D. S. Heeschen*
Affiliation:
National Radio Astronomy Observatory, Charlottesville, Virginia

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Giant extragalactic HII regions are found in the disks of nearby spiral and irregular galaxies, in the nuclear regions of spiral and elliptical galaxies, and in a variety of peculiar and interacting systems. At radio wavelengths they may emit thermal continuum radiation from the ionized gas and/or nonthermal synchrotron radiation if high energy electrons and magnetic fields are present. In some instances line radiation from associated molecular and neutral hydrogen clouds may also be detected. Table 1 illustrates the sorts of objects in which radio HII regions are observed and indicates the range of radio parameters found. Columns 1 and 2 give the galaxy and specific HII regions within the galaxy. Column 3 is the adopted distance of the galaxy. Column 4 indicates whether the emission is thermal (T) or nonthermal (N-T); column 5 is the 20 cm luminosity, and column 6 the linear size of the radio emitting region. For thermal sources the electron density, derived from the luminosity and size, is listed in column 7. The final column gives references. Note that almost all of the observational information obtainable from radio continuum observations is contained in columns 4, 5, and 6. Very occasionally there may be additional data concerning polarization or variability.

Type
Joint Commission Meetings
Copyright
Copyright © Reidel 1983

References

Alloin, D. and Duflot, R. 1979, Astron. Astrophys., 78, L5.Google Scholar
Balkowski, C., Chamaraux, P., and Weliachew, L. 1978, Astron. Astrophys., 69, 273.Google Scholar
Blitz, L. et al. 1981, Ap. J., 249, 76.CrossRefGoogle Scholar
Condon, J.J., Condon, M.A., Gisler, G., and Puschell, J.J. 1982, Ap. J., 252, 102.CrossRefGoogle Scholar
Condon, J.J. and Dressel, L. 1978, Ap. J., 221, 456.CrossRefGoogle Scholar
Elmegreen, B.G. and Elmegreen, D.M. 1982, A. J., 87, 626.CrossRefGoogle Scholar
Gehrz, R.D., Sramek, R.A., and Weedman, D.W. 1982, Ap. J., in press.Google Scholar
Heeschen, D.S., Heidmann, J., and Yin, Q. 1983a, in preparation.Google Scholar
Heeschen, D.S., Heidmann, J., and Yin, Q. 1983b, Ap. J., in press.Google Scholar
Huggins, P.J., Gillespie, A.R., Phillips, T.G., Gardner, F., and Knowles, S. 1975, M.N.R.A.S., 173, 69P.CrossRefGoogle Scholar
Hummel, E. 1980, Astron. Astrophys., 89, LI.Google Scholar
Israel, F.P. 1980, Astron. Astrophys., 90, 246.Google Scholar
Israel, F.P., Gatley, I., Mathews, K., and Neugebauer, G. 1982, Astron. Astrophys., 105, 229.Google Scholar
Kronberg, P.P. and Biermann, P. 1981, Ap. J., 243, 89.CrossRefGoogle Scholar
Kronberg, P.P., Biermann, P., and Schwab, F.R. 1981, Ap. J., 246, 751.CrossRefGoogle Scholar
Mills, B.Y., Turtle, A.J., and Watkinson, A. 1978, M.N.R.A.S., 185, 263.Google Scholar
O’Connell, R.W., Thuan, T.X. and Goldstein, S.J. 1978, Ap. J., 226, L11.CrossRefGoogle Scholar
Sargent, W.L.W. and Searle, L. 1970, Ap. J., 162, L155.CrossRefGoogle Scholar
Skillman, D.R. 1983, in preparation.Google Scholar
Sramek, R.A. and Weedman, D.W. 1983, in preparation.Google Scholar
Viallefond, F., Allen, R.J., and Goss, W.M. 1981, Astron. Astrophys., 104, 127.Google Scholar
Viallefond, F., Allen, R.J., and Goss, W.M. 1982, in press.Google Scholar
Weedman, D.W., et al. 1981, Ap. J., 248, 105.Google Scholar
Young, J.S. and Scoville, N.Z. 1982, B.A.A.S., 14, 617.Google Scholar